FPGA-Based Cavity Phase Stabilization for Coherent Pulse Stacking

Yilun Xu^{1,2}, Gang Huang¹, Larry Doolittle¹, Qiang Du¹, Russell Wilcox¹, Yawei Yang¹

¹Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ²Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract

Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse. This technique enables high average power, which will have a significant impact on laser-driven particle accelerators. We develop a robust and scalable digital control system with firmware and software integration for algorithms, to support the coherent pulse stacking application. We model coherent pulse stacking as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an FPGA. A 2-stage (2+1 cavities) 15-pulse stacking system achieves a 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5 kHz, and stabilized at an individually-prescribed round-trip phase with 0.7 deg and 2.1 deg RMS phase errors for Stage 1 and Stage 2 respectively. Optical cavity phase control with nm accuracy ensures 1.2% intensity stability of the stacked pulse over 12 hours.

Z domain modeling

Model the coherent pulse stacking in Z domain.

Consider the mirror as a digital filter, which shares the same transfer function. Z-transform is employed in algorithm for the implementation of FPGA. Give a direct link to the digital controller optimization, and also provides solutions to deterministic optical phase measurement. Easy to extend the system transfer function to cascaded cavities.

Algorithm of cavity phase stabilization

Failure to maintain the cavity phase matching translates into a decrease of the stacking efficiency and combined peak power.

Phase probe pulses are introduced to detect cavity phase.

* Cavity phase will determine the interference and the efficiency of the system. • Grey box model identification process (derivation of cavity phase from distorted measurement where photo-diode could only detect pulse intensity).

System architecture

Hardware: ML605 + FMC110 + XM105 2-CH 12-bit A/D & 2-CH 16-bit D/A & 400Msps ► kHz Feedback Control Repetition Rate

Firmware:

- Bottom Layer: Hardware-Dependent Drivers
- Intermediate Layer: Data Communication (UDP)
- ► Top Layer: Project Specific DSP and control modules

Stacking result

Pulse-pattern-based cavity phase detection algorithm.

Cavity phase is stabilized by proper feedback control of a piezo driven mirror for each cavity against thermal drift, acoustic perturbation and mechanical vibration. Round-trip length of each cavity is adjusted within a fraction of optical wavelength for prescribed phase. Failure of maintaining the cavity phase matching translates into a decrease of the stacking efficiency and combined peak power Cavity phase is different from pulse phase which is modulated by the phase modulator. **Initial Calibration** An approximate cavity phase can be computed simply and quickly by a dot-product of the N-One can traverse the cavity phase over 2π long optical vector measurement with a complex to calibrate the complex template vector. template vector. $o(\varphi) \cdot \vec{v} = e$ $\vec{o}(\varphi) = [O_1, O_2, \cdots, O_N]$ Template Vector $\vec{o}(\varphi) \cdot (\vec{a} + \vec{b} j) = \cos(\varphi) + \sin(\varphi) \cdot j$

0

Digital processing chain of cavity control module.

Stabilization results of coherent pulse stacking

► A 2-stage (2+1 cavities) 15-pulse stacking system achieves a 11.0 peak-power enhancement factor, compared to the theoretical limit of 12.0. \blacktriangleright Each cavity is stabilized with 0.7° and 2.1° (RMS) phase errors for Stage 1 and Stage 2. 10^{2} Stage 2 (Open Loop) Stage 1 (Open Loop) — Stage 2 (Closed Loop) Stage 1 (Closed Loop) 10 (rad/\sqrt{Hz})

► Intensity stability of the stacked pulse is kept within 1.2% (RMS) over 12 hours.

[►] Noise spectrum of the stacked pulse.

FPGA-Based Cavity Phase Stabilization for Coherent Pulse Stacking Y.Xu, G.Huang, L.Doolittle, Q.Du, R.Wilcox, Y.Yang

10

Spectral Density

10

10

LLRF2017, Barcelona, Spain Oct. 2017 P-84

Time (h)