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Abstract

Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse.
This technique enables high average power, which will have a significant impact on laser-driven particle accelerators. We develop a robust
and scalable digital control system with firmware and software integration for algorithms, to support the coherent pulse stacking application.
We model coherent pulse stacking as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm
on an FPGA. A 2-stage (2+1 cavities) 15-pulse stacking system achieves a 11.0 peak-power enhancement factor. Each optical cavity is fed
back at 1.5kHz, and stabilized at an individually-prescribed round-trip phase with 0.7 deg and 2.1 deg RMS phase errors for Stage 1 and
Stage 2 respectively. Optical cavity phase control with nm accuracy ensures 1.2% intensity stability of the stacked pulse over 12 hours.

Z domain modeling Algorithm of cavity phase stabilization

Model the coherent pulse stacking in Z domain. Failure to maintain thg cavity .phase matching. translates into a Phase probe pulses are introduced to detect cavity phase.
decrease of the stacking efficiency and combined peak power.

Stabilizing the cavity phase in Stage 1 and Stage 2 with errors less than 1.0 deg and 2.5 deg * A pulse-pattern-based cavity phase detection algorithm is employed in FPGA-based
; ; . ; respectively will keep the peak-power enhancement higher than 91% of its theoretical maximum. feedback control system. o o
* Consider the mirror as a d1g1t§11 filter, which * Instead of using the stack pulse train itself, a phase probe pulse burst can be optimized
shares the same transfer function. and injected behind the stack pulse train to diagnose the optical cavity fluctuation and
 Z-transform is employed in algorithm for lock the cavity phase according to the described cavity control model.
the implementation of FPGA. 11.2
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> Cavity phase will determine the interference and the efficiency of the system. (Stage 2) (Stage 1) Probe Pulses
> Grey box model identification process (derivation of cavity phase from distorted measurement
where photo-diode could only detect pulse intensity).
Pulse-pattern-based cavity phase detection algorithm. Digital processing chain of cavity control module.
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