

LLRF 2017

High Level Applications for SwissFEL LLRF System

Zheqiao Geng

Abstract

SwissFEL, which is under commissioning at Paul Scherrer Institut (PSI), Switzerland, consists of multiple RF stations either with standing wave cavities (e.g. RF Gun) or with travelling wave accelerating structures working at different frequencies. LLRF systems are used to measure the RF fields in cavities or structures and correct the fluctuations in RF fields with pulse-to-pulse feedback controllers. To facilitate the operations of multiple RF stations, the LLRF system should also provide algorithms and procedures to automate the setup, calibration and optimization of the RF systems. In this paper, several typical algorithms will be described, such as calibrating the DAC offset to reduce the RF leakage from vector modulator, calibrating the RF signal group delay and flattening the intra-pulse phase distribution with adaptive feed forward. The algorithms have been implemented as a LLRF High Level Applications (HLA) software for SwissFEL. The architecture of the LLRF HLA software will be introduced and the test results at SwissFEL will be also described.

LLRF Overview

Klystron spectrum

Frequency / MHz

Probe spectrum

Frequency / MHz

No smoothing

No smoothing

The LLRF system provides the following functions:

- □ Provides precise and accurate phase and amplitude measurements of RF signals at various locations of the RF system.
- □ Suppresses RF field fluctuations in cavities and accelerating structures.
- **Facilitates the operators to easily setup and operate the RF stations.**

Typical LLRF HLAs

S

Pulse Shape Optimization

SwissFEL RF Gun is a 2.6-cell standing wave cavity working at 2998.8 MHz (π mode). The nearest pass-band mode $(\pi/2 \text{ mode})$ is about 16 MHz away in spectrum. A sharp square pulse generated by DAC results in a wide band in the klystron output which stimulates the $\pi/2$ mode significantly. In order to reduce the bandwidth of $\frac{5}{2}$ 1.5 the Gun drive power, the rising and § falling edges of the RF pulse was smoothened with a half sine signal.

DAC Offset Correction

SwissFEL LLRF system employs direct up-conversion scheme for RF actuation. The leakage will generate significant errors in phase and amplitude actuations.

Solution: Add constant offsets in the DAC signals to generate an extra RF output with the same amplitude but opposite phase with respect to the RF leakage signal, resulting in the cancellation of the leakage.

Slope corresponding

applied to the DAC drive in

1.75

LLRF HLA Software Design

The LLRF HLA software is based a C++ framework for EPICS module

development (ooEpics).

COMPONENTS	DESCRIPTION	General Ctrl Set RF G
Coordinator	An active thread to coordinate the	Set LLRF State
	execution of the procedures and jobs.	RF ON DELAY
Procedure	Automation procedure to startup,	OFF
	stop and setup the RF system.	Destination State:
Job	A function that the LLRF HLA	Actual State:
	implements.	Subsystem Status
Service	An interface to interact with a physical	Modulator LLRF Ar High Power RF LLRF Di
	device in the RF system (e.g. klystron	Cooling Water LLRF Ma Timing LLRF Sla
	modulator).	Synch. LLRF Ma
LLRF	, A library implemented in C language	Subsystem Status Deta
Algorithm	to collect algorithms used in LLRF	
Library	system (e.g. calculate DAC offset).	

General Ctrl Set RF	Gen DAC Tab Corr DAC Offset	WF Timing Calib Vec Sur	m Setup FB Loop ILC C	Cav Tuning Acc Tuning Id I/Q Imb
Set LLRF State	RF Station Settings Set Point Kly Power (MW): 35.200 Acc Voltage (MV): 70.000 Beam Phase (deg): 90.000 Vsum Phase (deg): 22.829 Acc voltage setting within limit Beam calibration valid RF station ready (no trip) RF station available (not failed RF station in service (on-beam	Mea. Error 34.594 0.60597 20.644 49.356 90.009 -0.009 22.838 -0.009	Advanced Control Trigger Source EXTERNAL Int. Trigger Rate 100 HZ Amplt Feedback ON OFF Phase Feedback ON OFF	RF Drive Chain Signals VM PAMP KLY FOR KLY REF 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Subsystem Status Modulator ILLRA High Power RF ILLRA Cooling Water ILLRA Timing ILLRA Synch. ILLRA Interlock ILLRA Subsystem Status D	F Analog HW RF Measurement Status F Digital HW NOK from Ref F Master FW NOK from VM F Slave1 FW NOK from Kly F Master SW NOK from BOC F Slave1 SW NOK from Cav F Slave1 SW RF Signal Status	Lost from Ref Lost from VM Lost from Amp Lost from Kly Lost from BOC Lost from Cav Signal Settings	States Readback Type: States Readback Type: MOD_SCANDINOVA_K2 Mode: CONDITIONING State: RF_ON_PHAFE State: TRIGGER State: CONDITIONING Mode: CONDITIONING	LA Channel Access Status Num RPV: 505 Num RPV Mapped: 505 Sos General Settings Message Log Hulp HLA Version: 1.18.2 Release Date: 20161123

GUI of LLRF HLA for SwissFEL.

Conclusion / Outlook

The algorithms developed for the LLRF HLA provide practical automation to operate the RF systems of SwissFEL. A software package has been well architected and implemented based on EPICS and has been used in daily operation of SwissFEL. The HLA software tools have helped a lot in the commissioning of the RF system. The software architecture is flexible to add more functions to the HLA. Similar architecture can also be easily applied to other aspects of the accelerator control like the beam based feedback system. The experiences of the design and usage of the LLRF HLA will be also helpful for other accelerator facilities.

Reference:

[1] Z. Geng, "RF Control Optimization and Automation for Normal Conducting Linear Accelerators". IEEE Transactions on Nuclear Science, Vol. 64, No. 8, August 2017. *Revision 1, GZ84, 11.10.2017, LLRF17*

zheqiao.geng@psi.ch