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Processor-System-On-Chip (MPSoC) using the
novel Xilinx Ultrascale+. On such a platform
EPICS applications can run on a Quad-Core
Cortex-A53 ARM CPU, while providing a
separate Dual-Core Cortex-R5 for real-time
applications. This enables us to run real-time
applications on a bare metal system where the
latency of each interrupt can be determined,
while a Linux operating system for EPICS
applications runs on a separate CPU. The
interconnection between the CPUs and the
programmable logic is provided by an AXI
interface, which enables a low latency
transmission of small data blocks. First ideas
and concepts of a LLRF system based on such a
platform will be given.

powerful solution for the transmission of big data blocks, it comes at the T _
disadvantage of a high latency. In LLRF applications the measurement data &

exchanged between FPGA and CPU is far smaller than the graphics applications
PCl-Express was designed for.

Our measurements showed that we have 50us-300us minimum latency for any
data transmission between FPGA and CPU. For the SwissFEL the Master board
requires 500us and the Slave board 850us for the transmission of a single pulse
measurement into the user space memory of the LLRF RT-App. While this was
sufficient for our 100 Hz application, it leaved room for improvement.

Another aspect that could be optimized was the access to the Rear Transition
Module (RTM). Here the connection was established using a separate Spartan-6
FPGA, to cope with the limited PIN count of the chosen Virtex-6. This resulted in
additional latency for the access to the RTM, which was good enough for the
original purpose, but made this board less versatile when using it for different Figure 2: IFC 1210 Board

applications in other facilities.
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Figure 3: Zynq Ultrasacle+ Architecture
Source: Xilinx

Is VME still a viable solution?

An extensive analysis of the SwissFEL and SLS electronics
made apparent that in-crate communication is a thing of
the past. While we where filling 21-slot crates in 2001, our
SwissFEL LLRF system consists of three boards that
communicate via Ethernet.

Contrary to this, the data exchanged by Fast Feedback
Networks is growing significantly. Here, the connected
systems are spread over the whole machine, making it
impossible to host them in a single crate. At PSI, our
approach is to connect these systems via SFP+, using either
PCl-Express with bus mastering (BPMs) or MGTs (SwissFEL
Virtual RF Stations).

This allows us to focus on crate compatibility of all PSI
facilities, e.g. using an optional AXI-VME bridge, while
providing high-troughput solutions at the same time.

A Single Chip Solution — Xilinx Zynq Ultrascale+

For the SLS 2 upgrade in 2023, we propose to reduce the complexity of our
board design, the software design and the overall hardware costs, by using
Zynq Ultrascale+ Multi-Processor SoC from Xilinx.

AXI-Bus

Here, the CPUs and the Programmable Logic (PL) are connected via an AXI|
bus. This enables a low latency data transmission even for single byte -

transmissions.

Application Processing Unit

Running the EPICS control system on a dedicated Cortex A-53 CPU allows us
to decouple the real-time application from the non-real-time part. Here, we
are evaluating Peta-Linux, which offers full Xilinx support, and Yocto, which

is widely used in industrial applications.

Real-Time Processing Unit

A dedicated Cortex A5 CPU will be used for the LLRF RT-App. In difference

Figure 1: IFC 1210 Block Diagram
Source: 10x0S
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Figure 4: Block diagram of our processing system

to the IFC board, where the RT-App was running on custom build Linux,

where a dedicated core was reserved to ensure real-time behaviour, the Tightly Coupled Memory (TCM)

decoupling of control systems and RT-App allows for a bare metal Two separate 128kB memory blocks allow us to separate the
implementation. Hence, we expect a significantly reduced jitter for memory access for real-time data transmission between RPU
interrupt handling and therefore a much better real-time behavior than in and PL. The communication with the control system can be

our Linux application.

Just a LLRF System?

established using the DDR3 controller, which is shared by
both CPUs.

Conclusion / Outlook

At PSI we are putting a high effort on increasing our efficiency while First evaluations of the Zynq Ultrascale+ showed promising
maintaining multiple large research facilities in parallel. While it proved to results regarding the PL-CPU communication latency,

be cost efficient to adapt the board designs to the application when throughput and ease of implementation.

encountering appropriate piece counts, the effort for the board support

was often disregarded. In the past this lead to the deployment of different In the upcoming months we plan to perform further

chips for different application.

benchmarking of this platform, including the software
delivered from Xilinx, to ensure that is suitable for all our

However, the effort to build and maintain a custom Linux, the driver applications that can be covered using an FMC carrier board.
development for different platforms as well as interfacing CPU and ADCs on

the FPGA requires a significant amount of work.

If these benchmarks meet our expectations, we expect first
prototypes to be available in 2020 and deployment of the

Therefore, we are evaluating the deployment of the Xilinx Zynq Ultrascale+ new LLRF system in 2023.
as a new standard platform for our real-time applications at PSI.

Abbreviations:

MPSoC (Multi Processor System on Chip ) / AXI (Advanced eXtensible
Interface) / APU (Application Processing Unit) / RPU (Real-time
Processing Unit) / TCM (Tightly Coupled Memory) / VME (Versa Module
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Eurocard) / PL (Programable Logic)




