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Introduction System Performance

J-PARC (Japan Proton Accelerator Complex) LINAC was commissioned in October According to the control theory, the system transfer function for a open-loop system can be

2006. Its work is to accelerate an H” beam with a peak current of 50mA and a pulse
width of 500us up to 400MeV and then injected to Rapid Cycling Synchrotron ( RCS ). H,(s) =(
Up to present, the low level radio frequency control system of LINAC has been running
for more than 10 years. Even it still works well, the supplier didn’t produce the same
products many years before, nor did they maintain. Besides this, according to the plan,
the beam current of LINAC will increase to 60mA in recent months. As the result, the
beam loading effect will be more serious, it puts forward a higher requirement for the

written as below,
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In our case, the Q factor of test cavity is 3664, half band width of cavity wg 5 is 2.78 X

10°rad/s, system delay T4 is 2.38usec, in which 2.11usec (delay from DAC to ADC outside
FPGA) + 0.27usec (FPGA delay =13 clock cycle, 1 clock cycle = 1/48MHz). We didn’t use filter,

so W¢=0. In PI control, if we choose K},=1, K;=0, then equation (1) can be written as follow,

2.78x10° _ -
performance of LLRF system. Considering these, a new LLRF system for J-PARC Hy(s) = (S +27_ 7;105) . @72:38X1070s (2)
LINAC was developed and tested in the last few months. Its architecture and From Bode plot we find that system is stable. And when we choose K;,=3, K;=0 , we get the
performance are presented. critical situation, shown as Fig 4. It means that K, should be less than 3 when we do the PI value
setting.
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Fig. 4 Bode plot of system transfer function when K, =3, K;=0

Fig 1. System Test Schematic Diagram
For our system, P value set to 8 means actual K, equals to 1. In practice operation, P

L M_ £ | " ' |3 .".“ I-=— 1 e Y % LG value should not over 8, or it will cause oscillation. Figure below show the amplitude &
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ol Disitizer (back) Ll dme oy b —— = o7 — Fia A o phase stability of system when P value set to 5 and I value set to 2500 in real system. The
= % ] amplitude stability is £0.15%, phase stability is £0.1°.
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Fig 2. Low-level radio frequency control system i P
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The new digitizer adopted MTCA.4 architecture. It includes 14 ADC, 2 DAC, 2 FPGA -
and optical communication connector. Both ADC and DAC are 16bits. The sampling
speed of them are 8OMSPS and 320MSPS ( Million Samples per Second ). In FMC - o LI
( FPGA Mezzanine Card ) board, Xilinx Spantan6 FPGA was used, which main tasks Fig. 5 Amplitude & Phase waveform when P value set to 5, I value set to 2500
refer to 1Q convert, amplitude and phase adjustment of ADC, vector-sum control and
the control & monitoring of high-speed serial signal. Zynq 7000 FPGA was equipped in Future Plan

Carrier board. Its main function is to do the vector-sum control, filtering processing,
feedforward & feedback control, PI control, amplitude and phase adjustment of DAC,
EPICS input/output control (I0C) and the interlock criterion etc.

In J-PARGC, the cycle of chopped beam is 0.815usec, and the feed-forward waveform
should be synchronizing with the chopping pulse, shown as Fig. 6. However, the
rising-time of DAC that we measured is 3.66usec, shown as Fig. 7 . This value is too
FMC board (Spantan6 FPGA) Carrier board (Zyng 7000 FPGA) large to do the feedforward compensation. Additionally, in J-PARC one station just
have one or two cavities, we don’t need so many ADCs. For the future system, we
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Fig. 6 Illustration of chopped beam and Fig. 7 DAC rising time
Fig. 3 FPGA signal flow diagram feed-forward compensation waveform
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