
LATEX TikZposter

ApplicationCore: A Framework for Modern Control Applications
at the Example of a Facility Independent LLRF Server ●
M. Hierholzer, M. Killenberg, C. Schmidt, N. Shehzad, T. Kozak, G. Varghese, M. Viti (DESY, Germany),
M. Kuntzsch, R. Steinbrück (HZDR, Germany) S. Marsching (aquenos GmbH, Germany), A. Piotrowski (FastLogic,
Poland), C. Iatrou, J. Rahm (TU Dresden, Germany)

ApplicationCore: A Framework for Modern Control Applications
at the Example of a Facility Independent LLRF Server ●
M. Hierholzer, M. Killenberg, C. Schmidt, N. Shehzad, T. Kozak, G. Varghese, M. Viti (DESY, Germany),
M. Kuntzsch, R. Steinbrück (HZDR, Germany) S. Marsching (aquenos GmbH, Germany), A. Piotrowski (FastLogic,
Poland), C. Iatrou, J. Rahm (TU Dresden, Germany)

Motivation
•MicroTCA-based LLRF system developed by DESY used in many facilities: FLASH, EuropeanXFEL and REGAE at DESY, ELBE at HZDR,
FLUTE at KIT, TARLA at Ankara University (and more to come!)

•Facilities use different control system middleware: DOOCS at DESY, Siemens Simatic/WinCC with OPC UA at ELBE, EPICS 3 at FLUTE,
EPICS 4 at TARLA

•RF control loop running in FPGA requires relative complicated software interface providing many control tables etc.
• ∼ 700 control system variables for the single cavity controller, ∼ 3000 variables for the vector sum controller
•Contains some complex algorithms (e.g. adaptive feed forward)
•Porting to different control systems by branching would be difficult to maintain
•Adaptation for different DOOCS-based systems at DESY already creates many problems: improve on modularity!

Presenter
Martin Hierholzer
martin.hierholzer@desy.de

ChimeraTK abstraction layers

OPC-UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Application Core

Control System Adapter

Device Access Library

ReboT BackendPCIe Backend DOOCS Backend

TMCB2MicroTCA AMC Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

P
C
Ie

Dummy Backend

•DeviceAccess allows access to devices with different
transport protocols

•ControlSystemAdapter allows to write applications for
different middlewares

•ApplicationCore unifies both, and adds modularity and
multi-threading

Concept of ApplicationCore

•Application consists of many modules: application
modules with used code (algorithms), device modules and
control system modules

•Main application part instantiates modules and defines
connections

Code examples
struct Automation : public ApplicationModule {

using ApplicationModule::ApplicationModule;
ScalarPollInput<double> opSP{this, "opSP", "MV", "...", {"CS"}};
ScalarOutput<double> curSP{this, "curSP", "MV", "..."};
ScalarPushInput<int> trigger{this, "trigger", "", "..."};

void mainLoop() {
while(true) {

trigger.read(); // block until next macro pulse
opSP.readLatest(); // get current setpoint from panel
if(std::abs(opSP - curSP) > 0.01) {

curSP += std::min(std::max(opSP - curSP, 0.1), -0.1);
curSP.write(); // a waiting read() in "tableGeneration"

} // will now return
}

}
};

// individual connection with distribution to two receivers
automation.curSP >> tableGeneration.tableParams.setpoint

>> cs("currentSetpoint");

// connect all control tables with device
tableGeneration.controlTables.connectTo(dev);

// connect all variables tagged with "CS" with control system
findTag("CS").connectTo(cs);

// special treatment for update mode
auto macropulseNr = timer("macropulseNr", typeid(int),1, ctk::UpdateMode::push);
macropulseNr >> automation.trigger;

// special treatment for direct device to control system connection
dev("probeSignal", typeid(int), 16384) [macropulseNr] >> cs("probeSignal");

Application modules
•Application modules have input and output “accessors”
•Accessors are same as in DeviceAccess:
– can be used like normal variables
– can be scalar or arrays of any fundamental data type
– functions like read()/write() trigger data transfer

•Each application module has a thread running user code

Update mode and trigger

•Each accessor must be defined either push or poll
•Triggers can be used to initiate data transfer e.g. from poll-
only devices (not sending interrupts)

•Any push-type data source can be used as trigger
•LLRF server: use macropulse number from timing system
as trigger for readback from FPGA

Variable groups
•Variables can be grouped for improved structure
•Group-wide transfers possible in owning thread: writeAll(),
readAll(), readAny() etc.

• In description of connections, groups can be connected with
a single command: connectTo()

•Also module groups can be used with connectTo()

Multithreading
•Modern inter-thread communication and synchronisation
based on queues and futures

•This is build into ApplicationCore, no need to deal with it
in user code!

•Application modules just use their inputs and outputs,
which will be connected automatically with queues

• Synchronisation works by means of blocking calls to read()

Modular structure of the LLRF server
LLRFServer

AdcBoard Controller Automation MicroDAQ

• 3 big module groups:
–AdcBoard: direct signal monitoring
–Controller: monitor feedback loop, generate
control tables etc.

–Automation: ramping (optional)
•Can have multiple AdcBoard groups for more
channels (e.g. for mulit-cavity systems)

•MicroDAQ system writes data to HDF5 file

AdcBoard

attenuators limiterActive samplingScheme Probe Forward Reflected ...

Calibration Filter limiter prelimiter ChannelComputations

input CascadeInput output Samples

•AdcBoard has 8 (or 10) channels (“Probe”, “Forward”, ...), each with
identical structure

•Additional board-wide modules like “limiterActive” also provide per-
channel variables but access the same registers on hardware

ModuleGroup ApplicationModule VariableGroup Hidden Hierarchy
Variable

TAG1 TAG2Legend:

Information model with tags

AdcBoard

limiterActive Probe

output
WORD_FD_AMP_LIMIT_ACTIVE

REG

limiterActive

CS CH2

ChannelComputations limiter

bitScaling

CH2 CALIB

CH2_AMPL

CH2 REG

CH2_PHASE

CH2 REG

amplitude

CH2 CS DAQ

phase

CH2 CS DAQ

power

CH2 CS

limiter

CH2 CS DAQ

bitScaling

CH2 CALIB

WORD_FD_AMP_LIMIT_2

CH2 REG

AdcBoard

limiterActive

CS CH2

limiter

CH2 CS DAQ

amplitude

CH2 CS DAQ

phase

CH2 CS DAQ

power

CH2 CS

AdcBoard

WORD_FD_AMP_LIMIT_ACTIVE

REG

WORD_FD_AMP_LIMIT_2

CH2 REG

CH2_AMPL

CH2 REG

CH2_PHASE

CH2 REG

Original structure Ð→

adcBoard.findTag("CS") Ð→

adcBoard.findTag("REG") Ð→

Ç tags ¾

(model incomplete, full model too big to show)

Status of ApplicationCore and the LLRF server
•The ApplicationCore-based LLRF server has already been tested successfully in DOOCS environments
•Recently successful integration tests at HZDR/ELBE: driving a cavity with full control from WinCC over OPC UA
•CPU usage seems to be like the previous plain-DOOCS server (but runs faster due to improved multi-threading)
•ApplicationCore is available on Github:

http://github.com/ChimeraTK/ApplicationCore
•Complete and working example available (see code on the left side)
•Documentation (work in progress): http://chimeratk.github.ioLLRF2017, Barcelona, Spain, 17th October 2017, Reference P-35

http://github.com/ChimeraTK/ApplicationCore
http://github.com/ChimeraTK/ApplicationCore
http://chimeratk.github.io
http://chimeratk.github.io

