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Introduction

e Superconducting cavities have extremely high Q values, which leads to
minor physical variations able to cause singificant RF differences

* On higher frequency cavities, such as the 3.9 GHz cavities used for LCLS-
II, displacement becomes a significant issue as 0.1 mm movement can
lead to fundamental mode frequency shifts on the order of 1 kHz/um
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Definition

e Lorentz Force Detuning
- RF Gradient

e Microphonics
- Pressure Fluctuations
* Cryogenics
- Mechanical Distortions
* Cryogenics
* Vacuum Equipment
* HVAC

 Water
e Unknown Unknowns (Larry)

- Cable variations
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Lorentz Force Detuning

e Dynamic vs Static; Pulsed vs CW

100 — vo t=700us st
%] 7% TR : > E
" : [=27oHz | [Af=20Hz] | 5 |
u : '. = :
o i l i a2 11 :
£ D : g :
2 100 300 B0 509
a . | 8
' Piezo ON | 2
-100 '. . 007
f Piezo OFN 2 Microphonics g~40 Hz
v _ ' e Time, 10us/count
' time [us] : 08 - ' : ' ' '
200 1 21 a1 61
Figure 7: CCII average Lorentz force detuning at Figure 9:‘ Pulse—to-puls_e Variat%ons in the CCII phase
EAcc=26MV/m with and without compensation detector signal due to microphonics.
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The Math

= The steady state amplitude and phase controls needed for
microphonics is given by:

+ 1)L 5 5
Frr = 45%?FPC(3/Q) {(E + 1pQrpc(r/Q)cosgp)® + (ZQL—{E + IoQFPc(r/Q)SianB)
ZQL%E + I9Qrpc(r/Q)singp
@gr = arcTan E+1o0mc/Q)c050

* One interesting outcome of the math is that beam loading
reduces the control requirements due to microphonics.

*Frequently folks use the loaded-Q, Q, in place of the fundamental power
coupler-Q, Qzpc.
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Other Labs

e US Labs have started holding Microphonics Workshops, with the first held
in 2015

- https://indico.fnal.gov/event/10555/
* Microphonics is not a single-lab problem
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Comparison of a Hardened (SL24) and Zone With No Improvements (SL25)
During Truck Drive By
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* A liquid nitrogen truck drove down the south linac service road at
about 15 mph passing the zone at time equals about 60 seconds.
 Cavities operated in GDR mode at 3 MV/m in order to avoid trips.
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Fermilab CMTF
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Initial Findings - F1.3-01
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Transfer Functions

Cavity 1 Pzt-RF TF(ang) - 2 V peak-peak
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As-cooled vs Post-Improvement

 Comparing performance of the standard cryogenics configuration, the
microphonics environment in the F1.3-02 is a factor of ~10 improved

* Significant improvements in stability of the system, leading to a far more
predictable detuning environment
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Sources and Possibilities

Injection method

- The two-phase pipe was modified to include a baffle to avoid wind any
damming effects or wind dragging due to the injection

Cryomodule tilt due to tunnel installation

- Teststands include a tilt to mimic actual installation. Theories on gas and liquid
Helium flow abound

Cool-down line and piping

- Dead-head on cool-down line with osciallations in attached temperature
sensors. Secondary effect, or primary problem?

External sources
- Vacuum pumps ? Facility water? Waveguide transmission ?

TAOs
- Rott developed theory in 1969 (see TAO part 1)

- Requires careful design of system
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Determination

* Considerations of the type of noise sources is necessary. Narrow-band vs
broadband have different algorithms for efficient cancellation
e Stability analysis
- Understanding of system frequency-domain response over time and bandwidth
of signals

- Cross-correlation analysis and spectral density analysis with windowing can
provide further details

- Plotting statistical variance

2% Fermilab
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A Closer Look
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Impulse Testing

e Broadband, calibrated source
 Simultaneous capture with sensors
 Modal Testing on warm structures

Cavity-to-cavity coupling is readily tested
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Introduction To Impulse Hammers,
http://www.dytran.com/assets/PDF/Introduction%20t0%20Impulse%20Hammers.pdf
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Microphonics vs Cryogenic System Studies

19

Initially is was unknown that TAOs were
the culprit

Several cryogenic variables were varied
during long data captures to find
correlations.

Discovered that at Subcritical Supply
Pressures the microphonics improved by
factor of 10 !

In addition: reduction in steady-state flow
rate from 4.7 g/s to 1.75 g/s, supply
pressure stabilized, valve ice melted

This coincident combination of
improvements suggests TAOs in the valves
were the main contributor to the high
microphonics levels and 2K Static Heat

Load

10/19/2017 B.Hansen | C10rE-07

Low Supply Pressure Study - 1/19/2017
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Mechanical Modes
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Mechanical Modes

Mode Frequency (Hz)
1 7.5612
2 17.759
3 20.540
4 22.055
5 25.182
6 26.733
7 27.641
8 31.911
9 33.422
10 36.618




Facility Monitoring
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Diagnosis

e Fast pressure sensors
* Long-term data captures; Note FFT resolution
* RF power measurements

e Bubbles
e Cell Phones

e Microphones
 Geophones
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Mitigation

 What is active compensation ?
- |Is passive compensation and good design a form of active compensation ?

2% Fermilab
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Algorithms I s
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Fig. 17. Hybrid ANC system with combination of feedback ANC
and feedforward ANC.

Kuo, S and Morgan, D.. Active Noise Control: A Tutorial Review.
PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999. pp 943-973.

LMS =

1. 3. Simplified block diagram of ANC system.
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Mitigation

e LMS, NXLMS, FNLMS

- Definition of basis function very important

- Some functions have feedback inherent in the structure
 Model-based controllers

- Currently available anywhere?

- A model is necessary regardless of whether this is dynamic to have a base
design to compare to

e Full simulation of mechanical design

- Tuner, piping and support equipment can all contriubte to expected
microphonics and LFD
* A mix of narrowband and broadband suppression techniques are likely
desired, with characterization of all sources a necessity.

2% Fermilab
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Detuning Filter Bank -

Discrete-time State
Space Realization

General form for a
system whose

- Outputs and internal
states depend
linearly on the inputs
and internal states

u is the detuning
y is the piezo drive signal

X are estimates of the
amplitudes of the cavity
mechanical modes

A can be decomposed
into a 2x2 block diagonal

matrix
- |deal for
implementation in
an FPGA firmware

11/15/2016

Feed Forward Controller

Yk+1
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Manual Compensation in CM2/Cavity 2

Detuning fed to a
bank of parallel 2nd
order IIR filters

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Filter coefﬂuents
(frequency,
bandwidth, gain,
phase) are

programmable
Manually tuned filter
coefficients can
suppress cavity
detuning by a factor
of 3 or more
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Automatic Compensation in CM3/Cavity 1

Automated algorithm
uses Least Squares to
determine filter
coefficients from
- measured detuning
noise spectrum and
- piezo/detuning
transfer function
Single overall gain
adjusted manually
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BESSY Testing

 Feedback: 1-2 Hz 3 dB low-pass cutoff Pl controller, Kp ~ 10-20, limited
by tuner resolution and peak event stability

* Feedforward: Adaptive fourier-domain LMS
- Deconvolves piezo transfer function from the measured microphonics
- Phase shifter to compensate for loop phase

- Generated based on IFFT of detuning error signal FFT deconvolved form
transfer function

Yn = WEIFFT(anHpmzo—r&f)

€n — Hext—Afin — Hpiazo—*&_fyn Sin(‘ﬁslﬂﬁ)-
5 4 &%
Wptt = Wy — =T
SRS
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BESSY Testing
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DESY

 LMS with N notches per cavity
* Pipelined architecture

n
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DESY
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APS

* Narrowband (400th order) adaptive notch filter
* Excellent for removing discrete, narrowband sources

s=d+n
LPF Decimate . + §
y -
R Q- NPT
el BPF Interpolate  LPF
Adjustable
Digital Delay
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APS

Time Domain Phase Noise (Jitter)
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Conclusion

e Mitigation and control techniques requires an understanding of
systematic issues

- Working in a black box is not a good idea
- Don’t work on it alone and never take anything for granted
e Controller stability analysis is a necessity

e Thank You

2% Fermilab
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Additional Slides
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Audio Interpretations

* Look at things in different ways
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TO REVIEW

e Contgrol bandwidth and theory

e DC Robinson Stability (neumann 2015)

 Warren microphonics and ARC. Download and use

* LCR circuit model used for feedback (neumann [11])

* Get audio recordings from emails and save. LCLS-Il pCM
e get echo cancellation paper in correct location
 Model-based control

e LFD field**2 proportion for detuning vs integrator (square of cavity
gradient. Makes sense, as we’re balancing power)

e Standard feedback on the signal with notches helps. Is this good enough?
That is the real question. Pull from wepty036
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