Towards a better understanding of cavity field control

Olof Troeng, Bo Bernhardsson, Anders J Johansson (Lund U.)
LLRF17, 2017-10-19
Cavity Field Control

Some perspectives on the classic field control problem:
(coming from automatic control, high-intensity proton linac)
Cavity Field Control

Some perspectives on the classic field control problem:
(coming from automatic control, high-intensity proton linac)

- Cavity modeling, normalization
- Phasor diagrams, directionality
- Complex-coefficient systems
- Parasitic modes
\[
\frac{dV}{dt} = (-\omega_{1/2} + i\Delta\omega)V + RL\omega_{1/2}(2I_g + I_b)
\]

\[
P_g = \frac{1}{4} \frac{r}{Q} Q_{\text{ext}} |I_g|^2
\]
Accelerator Cavity Modeling (1/2)

\[\frac{dA}{dt} = (-\gamma + i \Delta \omega)A + \sqrt{2} \gamma_{ext} F_g + \frac{\alpha}{2} I_b \]

- \(A \) – Mode amplitude \([\sqrt{J}]\)
- \(F_g \) – Forward wave \([\sqrt{W}]\)

\[\frac{dV}{dt} = (-\omega_{1/2} + i \Delta \omega)V + R_L \omega_{1/2} (2 I_g + I_b) \]

\[P_g = \frac{1}{4} \frac{r}{Q} Q_{ext} |I_g|^2 \]

[Haus 1983]
\[
\frac{dA}{dt} = (-\gamma + i\Delta \omega)A + \sqrt{2}\gamma_{ext}F_g + \frac{\alpha}{2}I_b
\]

\(A\) – Mode amplitude \([\sqrt{J}]\)

\(F_g\) – Forward wave \([\sqrt{W}]\)

\(V = \alpha A \quad (\alpha = \sqrt{\omega_0(r/Q)})\)

\(P_g = |F_g|^2\)

\[
\frac{dV}{dt} = (-\omega_{1/2} + i\Delta \omega)V + R_L\omega_{1/2} (2I_g + I_b)
\]

\(P_g = \frac{1}{4} \frac{r}{Q} Q_{ext} |I_g|^2\)
Although we will soon normalize the model, the proposed parametrization [Waves & Field in Optoelectronics, Haus (1984)] has the following advantages:

- Cleaner expressions, e.g., $P_g = |F_g|^2$
- Mode states are not dependent on the particle velocity
- Cleaner treatment of parasitic modes of elliptical cavities
- Allows more direct derivation from Maxwell’s eqs.
Normalization

Normalization of accelerating mode dynamics around nominal operating point gives:

\[Y(s) = \frac{\gamma}{s + \gamma - i\Delta\omega} \underbrace{P_{\text{cav}}(s)}_{U(s) + K_g D_g(s) + K_b D_b(s)} \]

- \(K_g, K_b \) – dimensionless constants, typically \(1 \leq |K_g| \leq 2, 0 \leq |K_b| \leq 1 \)
\[
\frac{dA}{dt} = (-\gamma + i\Delta\omega)A + \sqrt{2}\gamma_{\text{ext}}I_g + \frac{\alpha}{2}I_b
\]

Phasor Diagrams

Mode amplitude \(A \) \([\sqrt{J}]\)

Terms of \(\frac{d}{dt}A \) \([\sqrt{J}/s]\)
Directionality in the Control Problem

\[\frac{dA}{dt} = (-\gamma + i\Delta \omega)A + \sqrt{2\gamma_{\text{ext}}}l_g + \frac{\alpha}{2}l_b \]

Directionality of objective

Implications:
Actual performance not directly dependent on \(A \) and \(\phi \)

Optimal controller is not rotationally symmetric
Directionality in the Control Problem

\[
\frac{dA}{dt} = (-\gamma + i\Delta\omega)A + \sqrt{2}\gamma_{\text{ext}}l_g + \frac{\alpha}{2}l_b
\]

Directionality of objective

Directionality of disturbances

longitudinal focusing

acceleration

K\textsubscript{g}d\textsubscript{g}

\sqrt{2}\gamma_{\text{ext}}F_g

K\textsubscript{b}d\textsubscript{b}

\frac{\alpha}{2}l_b
Directionality in the Control Problem

\[
\frac{dA}{dt} = (-\gamma + i\Delta\omega)A + \sqrt{2\gamma_{ext}}l_g + \frac{\alpha}{2}l_b
\]

Implications:
- Actual performance not directly dependent on \(A \) and \(\phi \)
- Optimal controller is not rotationally symmetric
Control Theory for Complex-Coefficient Systems

\[
G(s) = \sum_{k=a,1,...} \frac{c_k \gamma_k}{s + \gamma_k - i\Delta\omega_k}
\]

- Standard control theory applies (if $T \mapsto \ast$ and $\int_0^\infty \mapsto \int_{-\infty}^\infty$), e.g., the Nyquist criterion; negative frequencies are significant.
Control Theory for Complex-Coefficient Systems

\[G(s) = \sum_{k=a,1,\ldots} \frac{c_k \gamma_k}{s + \gamma_k - i \Delta \omega_k} \]

- Standard control theory applies (if \(T \mapsto \ast \) and \(\int_0^\infty \mapsto \int_{-\infty}^\infty \)), e.g., the Nyquist criterion; negative frequencies are significant
- Advantages vs. real, two-input two-output representation: Intuition, convenience, structure is implicit (useful for system id.)
Control Theory for Complex-Coefficient Systems

\[G(s) = \sum_{k=a,1,...} \frac{c_k \gamma_k}{s + \gamma_k - i\Delta\omega_k} \]

- Standard control theory applies \(T \mapsto \ast \) and \(\int_{0}^{\infty} \mapsto \int_{-\infty}^{\infty} \), e.g., the Nyquist criterion; negative frequencies are significant.

- Advantages vs. real, two-input two-output representation:
 - Intuition, convenience, structure is implicit (useful for system id.)

- MatLab handles complex-coefficient systems poorly.
Control Theory for Complex-Coefficient Systems

\[G(s) = \sum_{k=a,1,...} \frac{c_k \gamma_k}{s + \gamma_k - i\Delta\omega_k} \]

- Standard control theory applies (if \(T \mapsto \ast \) and \(\int_0^\infty \mapsto \int_{-\infty}^\infty \)), e.g., the Nyquist criterion; negative frequencies are significant
- Advantages vs. real, two-input two-output representation: Intuition, convenience, structure is implicit (useful for system id.)
- MatLab handles complex-coefficient systems poorly
- Two useful applications: loop phase and parasitic modes
Loop Phase Adjustment

Open loop transfer function

\[L(s) = P_{ca}(s)e^{-sL}e^{-i\theta} \cdot C_0(s)e^{i\theta_{adj}} = L_0(s)e^{i\delta} \]

Stability and robustness depends on loop phase adjustment error

\[\delta = \theta_{adj} - \theta \]
Loop Phase Adjustment

Open loop transfer function

\[L(s) = P_{\text{cav}}(s)e^{-sL}e^{-i\theta} \cdot C_0(s)e^{i\theta_{\text{adj}}} = L_0(s)e^{i\delta} \]

Stability and robustness depends on loop phase adjustment error

\[\delta = \theta_{\text{adj}} - \theta \]
Loop Phase Adjustment

Open loop transfer function

\[L(s) = P_{\text{cav}}(s)e^{-sL}e^{-i\theta} \cdot C_0(s)e^{i\theta_{\text{adj}}} = L_0(s)e^{i\delta} \]

Stability and robustness depends on loop phase adjustment error
\[\delta = \theta_{\text{adj}} - \theta \]

\[\delta = 0^\circ \]
\[\delta = \pi/6 \leftrightarrow 30^\circ \]
Loop Phase Adjustment

Open loop transfer function

\[L(s) = P_{\text{cav}}(s)e^{-sL}e^{-i\theta} \cdot C_0(s)e^{i\theta_{\text{adj}}} = L_0(s)e^{i\delta} \]

Stability and robustness depends on loop phase adjustment error

\[\delta = \theta_{\text{adj}} - \theta \]
Control Strategies for Parasitic Modes (1/3)

PI controller + 2nd order filter:
One-Sided Notch Filter

\[|F(i\omega)| \]

\[\angle F(i\omega) \]

Frequency [Hz]
Control Strategies for Parasitic Modes (2/3)

PI controller + one-sided notch filter + 2nd order filter:

\[\text{Re } L(i\omega) \]
\[\text{Im } L(i\omega) \]

\[|L(i\omega)| \]
\[|S(i\omega)| \]

Frequency [Hz]
PI controller + 3rd order filter, adjusting phase of resonant "bulge":
The important variable V_a is not measured!
The important variable V_a is not measured!
Parasitic Modes

The important variable V_a is not measured!
Summary

Considered some different aspects of the field control problem:

- Cavity modeling
- Complex-coefficient transfer functions
- Parasitic modes

Very brief treatment, some more details can be found in:

- Complex-coefficient Systems in Control
 OT, B. Bernhardsson and C. Rivetta

- Cavity Field Control for High-Intensity Proton Accelerators
 OT
Thank you for listening!
Extra slides
Effect of Signal with Specific Direction

\[u(t) = u_0 \cdot \cos(\omega t) \]

\[y(t) = u_0 \cdot \frac{1}{2} (G(i\omega)e^{i\omega t} + G(-i\omega)e^{-i\omega t}) \]

\[= u_0 \cdot \left[A_{\text{Re}} \cos(\omega t + \phi_{\text{Re}}) + iA_{\text{Im}} \cos(\omega t + \phi_{\text{Im}}) \right] \]