

wcichal@dmcs.pl

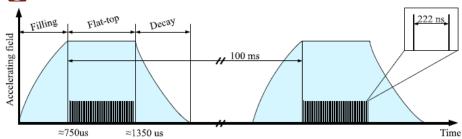
CW operation of XFEL cryomodule – field regulation performance study for high QI resonators

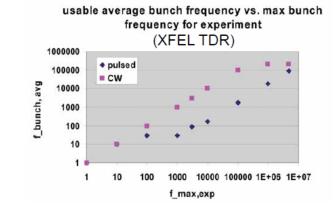
W. Cichalewski, J. Sekutowicz, R. Rybaniec, K. Przygoda,
 J. Branlard, H. Schlarb, V. Ayvazyan, C. Schmidt, S.
 Pfeiffer, A. Napieralski

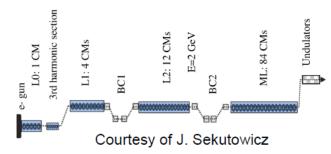
Agenda

- 1. CW and LPO operation motivation,
- 2. LLRF system setup,
- 3. Module under test,
- 4. Challanges,
- 5. Moderate and high gradient operation studies,
- 6. Results,
- 7. Summary and future plans.

Wojtek Cichalewski et. al,

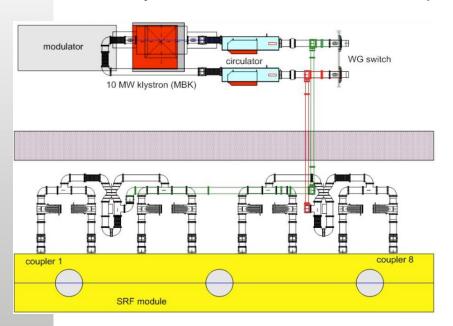


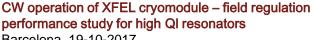

Motivation for high DF studies


- upgrade of the FLASH and XFEL,
- relaxed beam patterns for dedicated experiements,
- duty factor increase (limitation comes from the input coupler design – max 2kW of power)

Possible costs drivers for SP -> CW:

- New (dedicated) RF gun,
- Adaptation (extension) of the cryo-plant capacity,
- LLRF system adaptation,
- •Dedicated RF power source (for CW mode) IOT prototype under test.



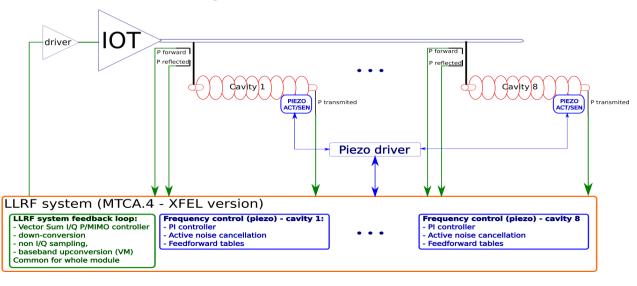


CMTB – CW/LPO teststand

- Tests of XFEL cryomodule have been performed in DESY at Cryo Module Test Bench (CMTB),
- CMTB is single 8 cavities cromodule test stand,
- It is equipped with fully functional cryogenics and high power system suitable for short pulse and CW (LPO) operation

CW - LLRF system setup

- MTCA.4 based LLRF system,
- Hardware setup similar to the XFEL configuration (single module operation),
- PZ16M for the piezo control,
- System can be switched from SP to CW operation with dedicated firmware/server configuration



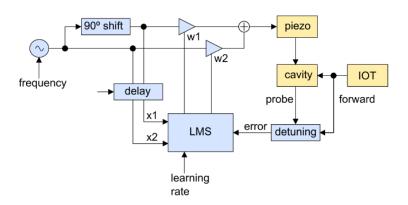
Wojtek Cichalewski et. al,

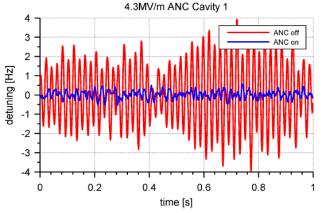
CW - LLRF system setup

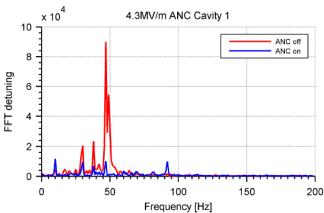
RF field regulation loop:

- P and MIMO controller,
- similar to short pulse with 4,5MHz feedback sampling,
- Cavity frequency regulation:
 - DC offset,
 - PI controller (mainly I component used) for low freq (<10Hz) regulation,
 - ANC based solution for persistent microphonics effects reduction

Wojtek Cichalewski et. al,



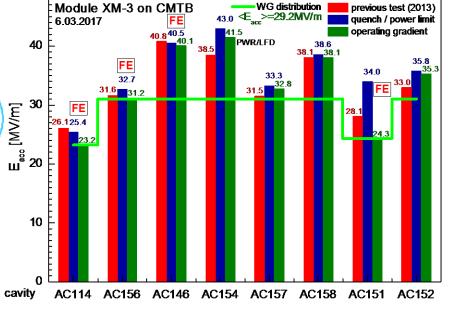


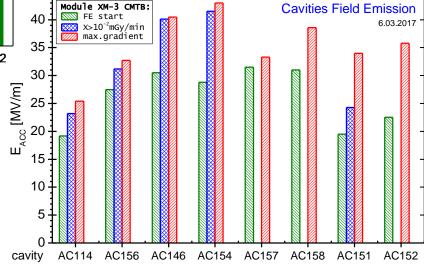

wcichal@dmcs.pl

Piezo based microphonics effect suppression

- Active Noise Canceller
 - adaptive algorithm
 - Least Mean Squares
 - implemented in the FPGA
 - no system identification required

Courtesy R. Rybaniec


Rybaniec Radosław , Przygoda Konrad, Cichalewski Wojciech *[et all.]*: FPGA based RF and piezo controllers for SRF cavities in CW mode, w: IEEE Transactions on Nuclear Science, IEEE Nuclear and Plasma Sciences Society, vol. 64, nr 6, 2017, ss. 1382-1388, DOI:10.1109/TNS.2017.2687981



XFEL module under test

Courtesy D. Kostin

XFEL module ID: XM-3

CW operation of XFEL cryomodule – field regulation performance study for high QI resonators

Barcelona, 19-10-2017 Wojtek Cichalewski et. al, wcichal@dmcs.pl

Challenges

- 1. High QI -> narrow bandwith,
- 2. Microphonics,
- 3. Ponderomotive instabilities effect,
- 4. FPC heating -> QI change (drop),
- 5. IOT nonlinearities,
- 6. Cavities HP signals cross-talk and reflections.

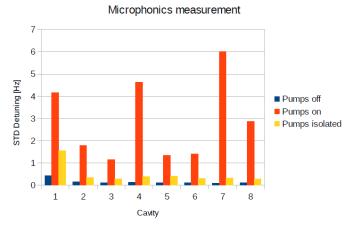
Wojtek Cichalewski et. al,

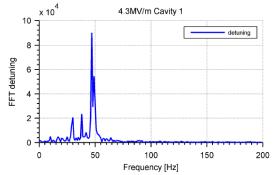
DESY

High Loaded Quality factor

- FPC are designed to operate with input power up to 2 kW (pulse operation range of 400kW),
- to increase Eacc for the same power Q external needs to be adjusted,

	FLASH	XFEL	CW	CW Max?
QI value	3e6	4,6e6	2e7	5e7
Half BW (Hz)	216	142	32,5	13
Input power [kW] (for Eacc = 20MV/m, tuned)	32,6	21,2	5	1,95


- In order to achieve high operation gradient Q external needs to be increased high,
- Bandwith becomes really narrow cavity is more prone to the microphonics,
- Other option (not discussed here) is a Long Pulse Operation (reduce DF to be on the safe side with FPC power limit).....


16-19 October

Microphonics

Courtesy R. Rybaniec

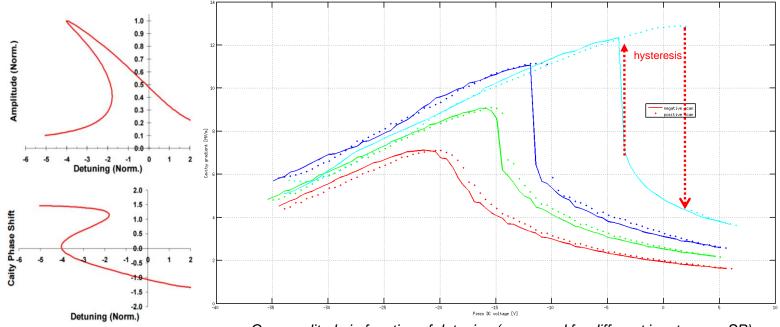
Microphonics main sources

- Vacum pumps,
- Helium pressure fluctuation,

Main frequencies visible on the cavity field

- 31 Hz
- 49 Hz

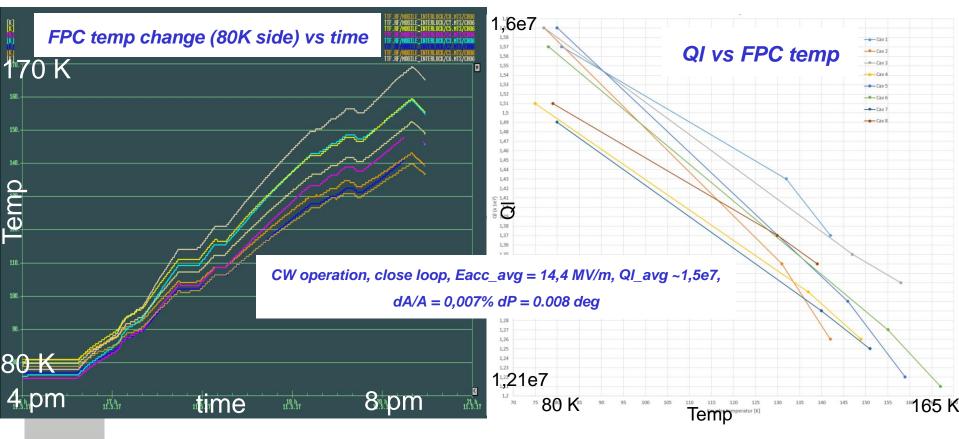
Microphonics detuning implies more RF power for compensation



Ponderomotive instabilities in VS regulation

Cavity gradient change in function of the detuning shows hysteresis effect

wcichal@dmcs.pl

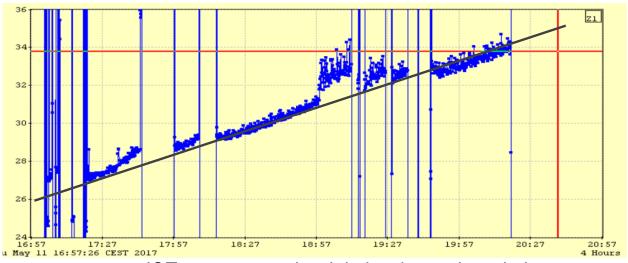

Cav amplitude in function of detuning (measured for different input power SP)

- In case of the Vector Sum control detuning (and field drop) of single cavity will affect others.
- Initial pretuning of the cavity have to take into account this issue.

Couplers thermal expansion effect

- Cavity operation with input power above 3kW leads to the FPC heating,
- Temperature increase results in the QI change.

Barcelona, 19-10-2017
Wojtek Cichalewski et. al,
wcichal @dmcs.pl



DESY

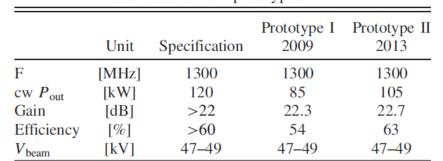
wcichal@dmcs.pl

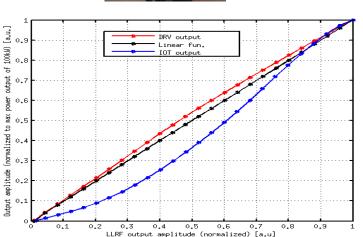
Couplers thermal expansion effect

In close loop VS operation the QI change is being compensated by the input power increase

IOT output power level during the study period

- The increase of the IOT power results also in the phase shift (due to nonlinearity) this can impact the detuning estimation and then piezo feedbacks,
- Even tough the conditions are changing the VS regulation is better than XFEL spec.




IOT nonlinearities

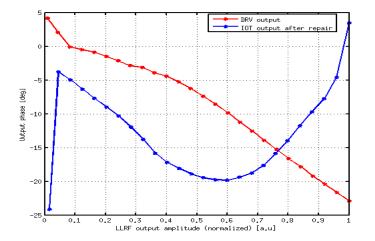
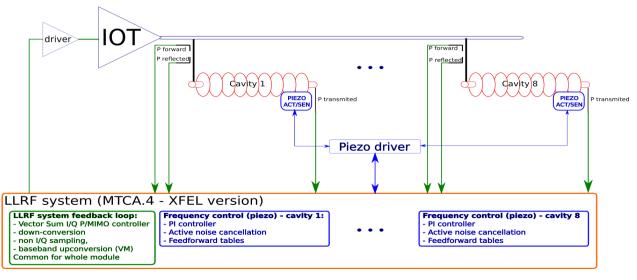

IOT prototype (by CPI) is being used for cavities supply during CW/LPO study.

TABLE III. Parameters of IOT prototypes.

- Gain increase can cause sudden IOT ouput power jump during close to open loop transition,
- Phase shift at the output of the IOT can influence cavity detuning estimation -> limit performance of the piezo feedbacks.



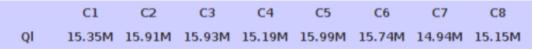
CW - LLRF system setup

RF field regulation loop:

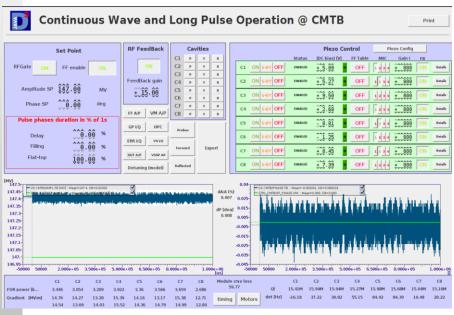
- P and MIMO controller,
- similar to SP with 4,5MHz feedback sampling,

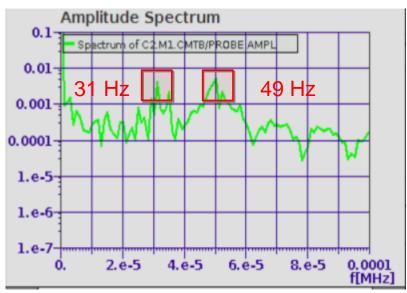
Cavity frequency regulation:

- DC offset,
- PI controller (mainly I component used) for low freq (<10Hz) regulation,
- ANC based solution for persistent microphonics effects reduction


Wojtek Cichalewski et. al,

QI ~1,5e7 operation


Close loop CW operation:


- -Proportional RF feedback,
- -Piezo I controller
- -ANC filters for some resonators (mainly 31Hz & 49 Hz),
- -, cold couplers" QI readout:

-Achieved performance:

dA/A = 0.007% (XFEL sp. 0.01%) dP = 0.008 deg (XFEL sp. 0.01)

Amplitude signal FFT (cav 2)

CW operation of XFEL cryomodule – field regulation performance study for high QI resonators

Barcelona 19-10-2017

Barcelona, 19-10-2017 Wojtek Cichalewski et. al, wcichal@dmcs.pl

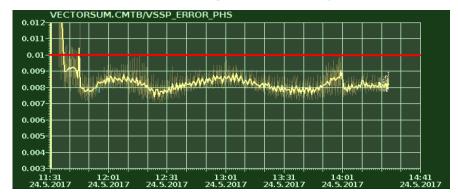
Cavities QI adjustment

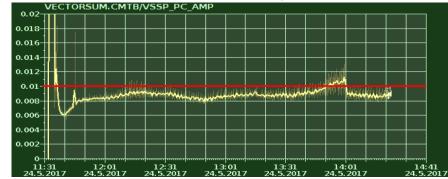
		After			Before	
Cav	QI	Pfwd [W]	Eacc [V/m]	QI	Pfwd [W]	Eacc [V/m]
1	2,80E+07	8,72E+02	1,00E+07	1,53E+07	1,60E+03	1,00E+07
2	1,95E+07	1,25E+03	1,00E+07	1,59E+07	1,54E+03	1,00E+07
3	2,16E+07	1,13E+03	1,00E+07	1,59E+07	1,54E+03	1,00E+07
4	2,00E+07	1,22E+03	1,00E+07	1,51E+07	1,62E+03	1,00E+07
5	1,90E+07	1,28E+03	1,00E+07	1,60E+07	1,53E+03	1,00E+07
6	1,80E+07	1,36E+03	1,00E+07	1,57E+07	1,56E+03	1,00E+07
7	1,70E+07	1,44E+03	1,00E+07	1,49E+07	1,64E+03	1,00E+07
8	1,78E+07	1,37E+03	1,00E+07	1,52E+07	1,61E+03	1,00E+07
	Sum	9,92E+03			1,26E+04	
	Expected i	input pwr diff.	2,69E+03	21%)]

Wojtek Cichalewski et. al,

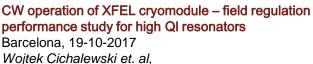
Results medium gradient ~15MV/m

Configuration:


- -Proportional RF feedback,
- -Piezo I controller
- -ANC filters for some resonators


wcichal@dmcs.pl

Cav	Eacc [MV/m]
1	17,80
2	14,39
3	14,07
4	16,08
5	14,35
6	13,03
7	14,92
8	12,76


dA/A = 0.007% (XFEL sp. 0.01%) dP = 0.008 deg (XFEL sp. 0.01)

Amplitude stability during studies

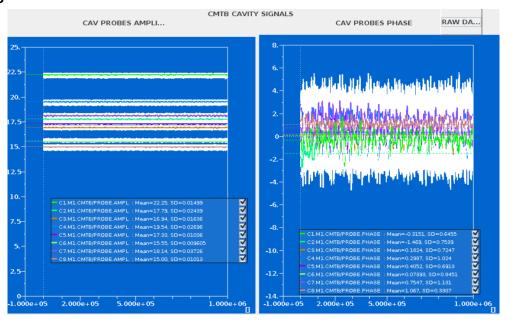
Phase stability during studies

Results for high gradient ~18MV/m (avg)

Controllers configuration:

- -Proportional RF feedback,
- -Piezo I controller
- -ANC filters for some resonators

dA/A = 0.011%= 0.010 degdP



Barcelona, 19-10-2017

wcichal@dmcs.pl

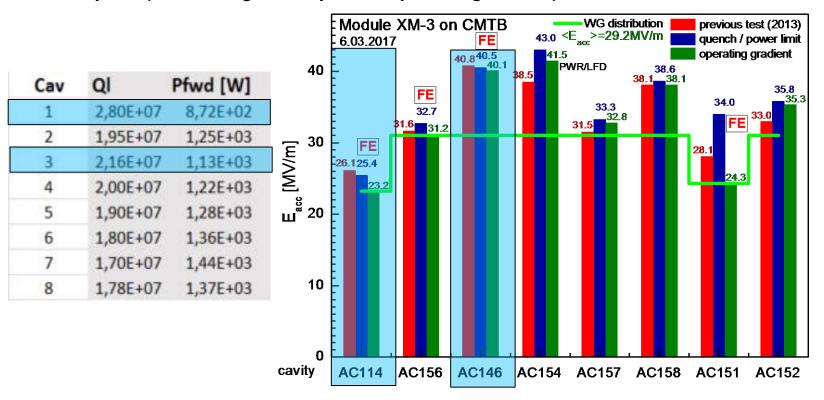
Wojtek Cichalewski et. al,

Cav	Gradient [MV/m]	dA/A [%]	dP [deg]
1	22,20	0,067	0,65
2	17,80	0,137	0,75
3	17,09	0,096	0,72
4	19,68	0,137	1,02
5	17,35	0,059	0,69
6	15,70	0,062	0,85
7	18,40	0,205	1,13
8	15,07	0,068	0,33

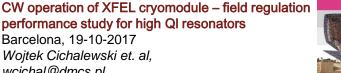
- Individual cavities performance exceeds field regulation thresholds,
- VS controll does not focus on the individual cavity regulation

Single cavity operation

- VS is not optimal for single cavity control,
- Try to operate single cavity to verify the regulation performance



performance study for high QI resonators


Barcelona, 19-10-2017

wcichal@dmcs.pl

Wojtek Cichalewski et. al,

Cavity 1 and cavity 3 have been chosen – highest QI (lowest input power needed)

Single cavity operation – cavity 3

Cavity data:

ID: AC146

Quench level: 40.5 MV/m

Radiation FE start level: ~30 MV/m, Main microphonics freq.: 31, 49 Hz

Gradient: 18 MV/m

- -RF feedback ON, proportional gain of 8,
- -Piezo Integral Feedback ON,
- -ANC OFF

Achieved VS regulation accuracy:

dA/A = 0.015% dP = 0.017 deg

Wojtek Cichalewski et. al,

wcichal@dmcs.pl

BARCELONA

16-19 October

2017

Single cavity operation – cavity 3

Gradient: 22 MV/m

- -RF feedback ON, proportional gain of 12,
- -Piezo Integral Feedback ON,
- -ANC ON (31Hz & 49Hz),

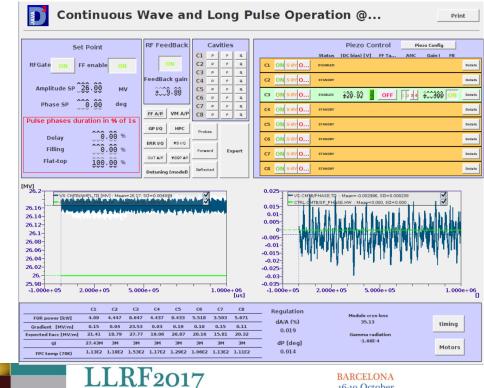
Achieved VS regulation accuracy:

dA/A = 0.018% dP = 0.016 deg

- tested up to the ~23,5 MV/m level,
- quench level not reached (40MV/m),
- High input power needed to achieve higher Eacc (Ql 2,2e7) – fast FPC temp increase.
- during gradient increase strong oscillations of ~168Hz observed (cavity mechanical mode),
- power distribution for the single cavity operation can/should be optimized,

Gradient: 23,5 MV/m

- -RF feedback ON, proportional gain of 9,
- -Piezo Integral Feedback ON,


Low Level Radio Frequency

Workshop

-ANC ON (31Hz & 49Hz),

Achieved VS regulation accuracy:

dA/A = 0.019%dP = 0.014 deg

16-19 October

2017

Summary and future plans

- CW operation in close loop is possible with current setup with grad up to 18 MV/m (average),
- Module operation for average grad of 15 MV/m with fulfilled XFEL specs.,
- Higher cavities QI will reduce required input power and it is still not a challenge for precise field regulation.

Future plans

- QI increase by modifying fundamental power couplers

 planned late 2017,
- 2. Possible QI range up to 5e7,
- Long Pulse operation study,
- 4. Optimization of the cavity in resonance filling (for LPO)
- Max Eacc / max DF study.

Thank You

