The challenge of operating a superconducting cavity at 5 Hz bandwidth

Gerd Kotzian, Akira Miyazaki, Daniel Valuch*, Walter Venturini

daniel.valuch@cern.ch

HIE-Isolde at CERN

- HIE-Isolde is a major upgrade of the radioactive beams facility at CERN
- 40 MV superconducting linac based on 32 independently phased superconducting quarter-wave resonators
- 20 SC cavities installed early 2018

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

HIE-Isolde at CERN

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

HIE-Isolde at CERN

- RF system runs at 101.28 MHz, direct RF sampling and RF generation, direct digital quadrature demodulation
- Cartesian P-I feedback controller, with dynamically calculated set-points, self excited loop, generator driven mode, closed loop operating modes
- Cavities are operated in CW at 5 Hz bandwidth (Q_{ext} ~2x10⁷, P_{fwd} ~70 W)
- 700 W solid state power amplifiers
- Aim to keep the forward power below 100 W

QWR resonance control challenge

- The cavity tuning plate is very thin large LFD
 - 75 Hz from zero to max field \rightarrow 25x operating bandwidth (BW)
- Operational experience:
 - Typical microphonics ~0.5-1 BW_{peak}, perturbation frequencies 50++ Hz
 - Typical "slow" detuning due to "fast" IHe pressure variation up to 10 BW within 30 seconds
- Operating this cavity at high field is not always easy...

Transmitted power method

• The instantaneous cavity tune state can be calculated from the forward and antenna signals

$$\Delta f = \frac{1}{2} BW \frac{|V_{fwd}|}{|V_{ant}|} \sin(\varphi_{ant} - \varphi_{fwd})$$

f_{RF} =101.28 MHz, Q₀=6.6x10⁸, BW=5 Hz

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

• The instantaneous cavity tune state can be calculated from the forward and antenna signals

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

Reflection coefficient method

19.10.2017

• The instantaneous cavity tune state can be calculated from the measured reflection coefficient

f_{RF}=101.28 MHz, Q₀=6.6x10⁸, BW=0.5,1,2,5,10 Hz

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

• The instantaneous cavity tune state can be calculated from the measured reflection coefficient

19.10.2017

• The instantaneous cavity tune state can be calculated from the measured reflection coefficient

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

• No tuner movement in 2 hours, cavity freq. within +/-2.5Hz

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

• Slow IHe pressure variation with a minute cycle

19.10.2017

The challenge of operating superconducting cavity at 5 Hz bandwidth. LLRF 2017 workshop Barcelona

• Then the perturbation comes...

19.10.2017

The challenge of operating superconducting cavity at 5 bandwidth. LLRF 2017 workshop Barcelona

A way out?

• Is there a more "quiet" signal representing the cavity tune state?

19.10.2017

A way out?

- The integral loop contribution can be used to **estimate** the cavity resonant frequency instead of **measuring** it using the very dynamic Fwd/Rfl signals
- Phase information seems to be sufficient for reliable tuning
- No need for minimum finding regulator → no tuner movement
- Method already tested in the machine, very promising results

Thank you for your attention

3.11.2015

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

LLRF system for a complete cryomodule housing 6 cavities

Fast RF interlock crate

3.11.2015

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

3.11.2015

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

3.11.2015

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

3.11.2015

HIE-Isolde LLRF challenges and commissioning. LLRF 2015 workshop Shanghai

21

_