

Automatic phase calibration for RF cavities using beam-loading signals

Jonathan Edelen LLRF 2017 Workshop (Barcelona) 18 Oct 2017

LLRF2017 Low Level Radio Frequency Workshop

• How do we meet 10⁻⁴ energy stability for PIP-II?

- How do we meet 10⁻⁴ energy stability for PIP-II?
 - Assume we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively
 - We have shown in simulation that we can correct for calibration errors using beambased feedback on the last 6 cavities in the LINAC

- How do we meet 10⁻⁴ energy stability for PIP-II?
 - Assume we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively
 - We have shown in simulation that we can correct for calibration errors using beambased feedback on the last 6 cavities in the LINAC

- How do we meet 10⁻⁴ energy stability for PIP-II?
 - Assume we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively
 - We have shown in simulation that we can correct for calibration errors using beambased feedback on the last 6 cavities in the LINAC
- What about drift?
 - Temperature drift in the cables
 - Phase drift from the RFQ
 - Other sources of calibration change or drift

- How do we meet 10⁻⁴ energy stability for PIP-II?
 - Assume we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively
 - We have shown in simulation that we can correct for calibration errors using beambased feedback on the last 6 cavities in the LINAC
- What about drift?
 - Temperature drift in the cables
 - Phase drift from the RFQ
 - Other sources of calibration change or drift
- Recalibration requires machine studies which reduces up-time

- How do we meet 10⁻⁴ energy stability for PIP-II?
 - Assume we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively
 - We have shown in simulation that we can correct for calibration errors using beambased feedback on the last 6 cavities in the LINAC
- What about drift?
 - Temperature drift in the cables
 - Phase drift from the RFQ
 - Other sources of calibration change or drift
- Recalibration requires machine studies which reduces up-time
- Develop a scheme that uses beam-loading signals in the cavities to determine the synchronous phase of the beam parasitically to machine operation

Automatic calibration scheme

- Turn off feed-forward beam loading compensation and measure the beam loading transient
- Calculate the beam phase relative to the RF
- Adjust the cavity phase calibration accordingly
 - Note that this is for individually controlled cavities

Automatic calibration scheme

- Turn off feed-forward beam loading compensation and measure the beam loading transient
- Calculate the beam phase relative to the RF
- Adjust the cavity phase calibration accordingly
 - Note that this is for individually controlled cavities
- Assumptions
 - Amplifiers are operating in the linear regime
 - Disturbances other than beam-loading (microphonics, LFD, etc.) are small or slow relative to the timescale of the response due to beamloading
 - Loop phase and gain are calibrated

Block diagram of model

Block diagram of model

• Use the block diagram to compute the system transfer function

$$V_{\text{cav}} = \left(V_{\text{set}}T_{\text{RF}}(s)T_{\text{cont}}(s) + V_{\text{ff}}T_{\text{RF}}(s) + V_{\text{beam}}\right) \left(\frac{T_{\text{cav}}(s)}{1 + T_{\text{cav}}T_{\text{RF}}(s)T_{\text{cont}}(s)e^{-st_0}}\right)$$

 Beam loading is linearly independent from changes to the set-point and feed forward

LLRF2017 Low Level Radio Frequency Workshop

• Using the system transfer function model:

 $V_{\text{cav}} = \left(V_{\text{set}}T_{\text{RF}}(s)T_{\text{cont}}(s) + V_{\text{ff}}T_{\text{RF}}(s) + V_{\text{beam}}\right) \left(\frac{T_{\text{cav}}(s)}{1 + T_{\text{cav}}T_{\text{RF}}(s)T_{\text{cont}}(s)e^{-st_0}}\right)$

• Casting in a simpler form

 $V_{\rm cav} = V_{\rm set}F(s) + V_{\rm ff}G(s) + V_{\rm beam}H(s)$

LLRF2017 Low Level Radio Frequency Workshop

• Using the system transfer function model:

 $V_{\rm cav} = \left(V_{\rm set} T_{\rm RF}(s) T_{\rm cont}(s) + V_{\rm ff} T_{\rm RF}(s) + V_{\rm beam}\right) \left(\frac{T_{\rm cav}(s)}{1 + T_{\rm cav} T_{\rm RF}(s) T_{\rm cont}(s) e^{-st_0}}\right)$

• Casting in a simpler form

 $V_{\rm cav} = V_{\rm set}F(s) + V_{\rm ff}G(s) + V_{\rm beam}H(s)$

• Convert to time domain

$$V_{\rm cav}(t) = V(0) + \int_{-\infty}^{\infty} I_{\rm beam} I(t) H(t-\tau) d\tau$$

• Using the system transfer function model:

$$V_{\rm cav}(t) = V(0) + \int_{-\infty}^{\infty} I_{\rm beam} I(t) H(t-\tau) d\tau$$

• Solve for beam current $I_{\text{beam}}^{Q} = \underbrace{V_{\text{cav}}^{Q}(t) - V^{Q}(0)}_{\int_{-\infty}^{\infty} I(t)H(t-\tau)d\tau} \qquad \text{Unknown function}$

LLRF2017

Workshop

Low Level Radio Frequency

• Using the system transfer function model:

$$V_{\rm cav}(t) = V(0) + \int_{-\infty}^{\infty} I_{\rm beam} I(t) H(t-\tau) d\tau$$

• Solve for beam current $I_{\text{beam}}^{Q} = \underbrace{V_{\text{cav}}^{Q}(t) - V^{Q}(0)}_{\int_{-\infty}^{\infty} I(t)H(t-\tau)d\tau} \qquad \text{Unknown function}$

$$\phi_{\rm beam} = \tan^{-1} \left(\frac{I_{\rm beam}^Q}{I_{\rm beam}^I} \right)$$

• Using the system transfer function model:

$$V_{\rm cav}(t) = V(0) + \int_{-\infty}^{\infty} I_{\rm beam} I(t) H(t-\tau) d\tau$$

• Solve for beam current $I_{\text{beam}}^{Q} = \underbrace{V_{\text{cav}}^{Q}(t) - V^{Q}(0)}_{\int_{-\infty}^{\infty} I(t)H(t-\tau)d\tau} \qquad \text{Unknown function}$

$$\phi_{\text{beam}} = \tan^{-1} \left(\frac{I_{\text{beam}}^Q}{I_{\text{beam}}^I} \right) = \tan^{-1} \left(\frac{V_{\text{cav}}^Q(t) - V^Q(0)}{V_{\text{cav}}^I(t) - V^I(0)} \right)$$

LLRF2017 Low Level Radio Frequency Workshop

• Using the system transfer function model:

$$V_{\rm cav}(t) = V(0) + \int_{-\infty}^{\infty} I_{\rm beam} I(t) H(t-\tau) d\tau$$

• Solve for beam current $I_{\text{beam}}^{Q} = \underbrace{V_{\text{cav}}^{Q}(t) - V^{Q}(0)}_{\int_{-\infty}^{\infty} I(t)H(t-\tau)d\tau} \qquad \text{Measurement}$ Measurement Unknown function Can integrate to improve SNR $\phi_{\text{beam}} = \tan^{-1} \left(\underbrace{I_{\text{beam}}^{Q}}_{I_{\text{beam}}} \right) = \tan^{-1} \left(\underbrace{\frac{V_{\text{cav}}^{Q}(t) - V^{Q}(0)}{V_{\text{cav}}^{I}(t) - V^{I}(0)}}_{V_{\text{cav}}^{I}(t) - V^{I}(0)} \right)$

🛚 🛟 Fermilab

Proof of principle test: 162.5 MHz bunching cavity

LLRF2017 Low Level Radio Frequency Workshop

- 162.5 MHz cavities
 - 2 gap quarter wave resonator
 - Loaded Q ~5000
 - r/Q ~600
- Pulsed and CW operation
- Operating voltage is 50-100 kV (peak energy gain)
- Beam energy is 2.1 MeV
- Beam loading voltage is ~ 15 kV

Proof of principle results: ideal beam loading

2.0

1.0

0.5 0.0

-0.5

-1.0 -1.5 -2.0L

50

100

time [µs]

150

200

- Perform a phase scan with feed-forward disturbance using the LLRF system
- Use the field in the cavity to calculate the phase of the disturbance
- Compare the calculated phase with the set phase of the disturbance

Measurements of cavity disturbance due to LLRF driven disturbance as a function of drive phase

LLRF2017 Low Level Radio Frequency Workshop

Proof of principle results: ideal beam loading

- Perform a phase scan with feed-forward disturbance using the LLRF system
- Use the field in the cavity to calculate the phase of the disturbance
- Compare the calculated phase with the set phase of the disturbance

LLRF2017

Workshop

Low Level Radio Frequency

Difference between the calculated phase of the beam-like disturbance and the drive phase of the disturbance. Errors likely due to crosstalk.

Proof of principle: real beam loading

LLRF2017 Low Level Radio Frequency Workshop

- The feed-forward disturbance should be a good approximation of a real beam loading disturbance
- Results with the feed-forward disturbance were promising

Proof of principle: real beam loading

🚰 Fermilab

- The feed-forward disturbance should be a good approximation of a real beam loading disturbance
- Results with the feed-forward disturbance were promising
- However, tests with real beam-loading did not perform as expected

Proof of principle: real beam loading

- Statistical errors are similar for the two tests
 - Wobble in ideal disturbance suspected to be caused by cross talk
 - Large deviations in beam phase measurements cause by beam dropout

• We have a technique that should in principle be able to determine the beam phase relative to the RF to approximately 0.5 degrees

- We have a technique that should in principle be able to determine the beam phase relative to the RF to approximately 0.5 degrees
- Beam testing was unsuccessful
 - Unknown source of the errors: Low-beta effects, geometry issues?
 - Try testing on other cavities as well as analyze other signals

- We have a technique that should in principle be able to determine the beam phase relative to the RF to approximately 0.5 degrees
- Beam testing was unsuccessful
 - Unknown source of the errors: Low-beta effects, geometry issues?
 - Try testing on other cavities as well as analyze other signals
- Future plans
 - Extend to amplitude calibration
 - Include detuning subtraction

- We have a technique that should in principle be able to determine the beam phase relative to the RF to approximately 0.5 degrees
- Beam testing was unsuccessful
 - Unknown source of the errors: Low-beta effects, geometry issues?
 - Try testing on other cavities as well as analyze other signals
- Future plans
 - Extend to amplitude calibration
 - Include detuning subtraction
- Open to suggestions and discussion

Thank you!

