Introducing Fixed Frequency Clock Operation on the CERN VXS LLRF Platform

John C. Molendijk CERN
Outline

- Context
- Original Sweeping Clock LLRF Implementation
- Motivation for Change
- Requirements for a Fixed Frequency Clock Scheme
- FTW Distribution / Synchronisation
- Why Clock at 122.7 MHz?
- Fixed Frequency Clock LLRF implementation
 - RF Receiver (DDC)
 - RF Modulator (SDDS)
- Results
- References
- Conclusion
Two families of synchrotrons at CERN

 a) Typically smaller circular accelerators / decelerators:
 • PSB Proton Synchrotron Booster (4 rings)
 • LEIR Low Energy Ion Ring
 • ELENA Extra Low ENergy Antiproton decelerator
 • AD P-bar decelerator
 b) Single \(f_{\text{rev}} \) side-bands treated individually
 c) Large RF frequency sweep range (ELENA ~factor 7)
 d) All of which are / will use Finemet cavities

VXS LLRF of these machines are the topic of this talk, see also:
 • P-91 CERN’s VXS LLRF platform: new features & beam results
 Maria Elena Angoletta, CERN, Geneva, Switzerland

2. LLRF systems with wide-band (many \(f_{\text{rev}} \) side-bands) feedback
 • SPS Super Proton Synchrotron
 • LHC Large Hadron Collider

These machines are the topic of:
 • O-24: Beam Synchronous Processing: Fixed Clock and RF Regeneration. New Paradigms for CERN SPS LLRF
 Javier Galindo Guarch, CERN, Switzerland
 • P-77 Implementation of a One-Turn Delay Feedback with a Fractional Delay Filter
 Lorenz Schmid, Philippe Baudrenghien, Gregoire Hagmann, CERN, Geneva, Switzerland
 • P-92 The SPS LLRF upgrade project: An update
 Gregoire Hagmann¹, Javier Galindo Guarch¹,², Gerd Kotzian¹, Lorenz Schmid¹, Arthur Spierer¹, Philippe Baudrenghien¹,², CERN, Geneva, Switzerland, ²UPC, Barcelona, Spain
Original Sweeping Clock LLRF Implementation (1)

- Common Master DDS generated (RF) clock $f_{rev} \cdot h_{base}$ (~40 – 125 MHz)
 - Frequency Tuning Word controlled by one DSP
 - Distributed via a dedicated VXS channel to all modules
- Common Master DDS firmware generated TAG / DTAG
 - Revolution frequency clock +
 - Local Oscillator Synchronisation events
 - Distributed via a dedicated VXS channel to all modules
Original Sweeping Clock LLRF Implementation (2)

- Typical RF receiver DDC
Original Sweeping Clock LLRF Implementation (3)

CIC Filter

- NULLs automatically track \(f_{rev} \) multiples
- Gain Correction => simple bit shift \((h_{base} = \text{power of 2})\)
- Linear Phase

\[
Z^{-1} = \frac{1}{h_{base} \cdot f_{rev}}
\]

Main mixing products
\(a[\cos(\cdot) + \cos(h2 \cdot t)]\)

Integrator
\(Z^{-1}\)

\(R = 2^N\)

Comb
\(D = h_{base}\)

Gain Correction
\(I = a \cdot \cos(\cdot)\)

1

RD

Typical Response

-262kHz/notch

0dB

-50dB

CIC Naming conventions, R, D, according to [3]
Original Sweeping Clock LLRF Implementation (4)

- Typical RF vector modulator SDDS
 - I/Q in base-band (from DSP) are up-modulated to RF
 - Sample spacing = \(f(\text{f}_{\text{rev}}) = \frac{\text{T}_{\text{rev}}}{h_{\text{base}}} \)

\[
C = \frac{\text{H}_{\text{i}}}{h_{\text{base}}} \frac{2}{h_{\text{base}}} \quad \text{FTW} \quad \text{CLR} \\
\text{VXS} \quad \text{DAC} \quad \text{RF} \\
\text{VXS (D)TAG} \quad \text{decoder} \quad \text{DTAG}
\]

RF output for \(h_{\text{base}} = 32 \)
Motivation for Change

Issues with sweeping clock
- MDSDS clock constraint: \(f_{\text{min}} \) VXS (\(~20\text{MHz}\)) \(\leq f_{MDDS} \leq f_{\text{max}} \) ADC (125 MHz)
 - Limited sweep range
 - Puts constraints on \(h_{\text{base}} \) (granularity)
 - DDC ADC anti-aliasing LPF cut-off frequency?
 - SDDS DAC reconstruction LPF cut-off frequency?
- Operate ADC well below optimal frequency
- Coherent sampling:
 - Folds back harmonic distortion onto signal
 - Oversampling ENOB gain reduced (noise ≠ white & uniform)
- Tagging unreliable at certain frequencies due to FPGA path delays

Properties with fixed frequency clock
- MDSDS clock frequency fixed
- Nearly unlimited frequency range for DDC / SDDS
- Sample granularity always maximal
- DDC ADC anti-aliasing LPF fixed
- SDDS DAC reconstruction LPF fixed
- ADC operated at optimal frequency
- Incommensurate sampling:
 - Harmonic distortion mostly out of band
 - Maximize oversampling ENOB gain
 - Tagging can easily be made reliable

Sweeping Clock System

Fixed Frequency Clock System
Requirements for a Fixed Frequency Clock scheme

1. Reliable Frequency Tuning word (FTW) distribution
 a) Must maintain absolute synchronism (avoid phase slippage) between system-wide distributed NCOs

2. Capability to deliver clock / FTW signals to external systems (over fibre)
 a) Frequency > lower limit media (ac coupling)
 b) DC balanced

3. A suitable harmonic (mixing by-products) suppression filter for the DDC demodulators

4. Modest complexity to allow implementing multi-demodulator / demodulator banks. One channel per required harmonic.
FTW Distribution / Synchronisation

Finally retained solution:
1. Multicast the fixed MDDS clock on the VXS
2. Use the MDDS clock synchronous TAG-line to VXS multicast:
 a) Manchester Encoded (DC-balanced) F_{rev} value [Hz]
 b) Optional Double TAG, phase accumulator reset
 c) Transmission once per DSP cycle 10µs typical
 d) Received by all nodes at the exact same clock
3. Multi-casted clock and TAG routable to SFP optical interfaces
Why Clock at 122.7 MHz?

To convert the distributed numerical f_{rev} [Hz] value to FTW we need M:

$$M = \frac{FTW}{f_{rev}}$$

From:

MDDS equation:

$$f_{rev} = \frac{FTW}{2^{32}} f_{MDDS}$$

and

Maximal ADC (MDDS) frequency = 125 MHz

we get:

$$M = \frac{FTW}{f_{rev}} = \frac{2^{32}}{125 \times 10^6} = 34.36 \ldots$$

Rounding M up to the nearest integer 35 we get:

$$f_{MDDS} = f_{FIX} = \frac{2^{32}}{35} = 122.713.351.314 [Hz]$$
Fixed Frequency Clock LLRF Implementation (1)

RF Receiver, 1st idea:
- Clock all elements with f_{FIX} and Clock Enable f_{MO}
- Tune CIC filter notches to f_{rev} harmonics using Clock Enable f_{MO}
- A shame to throw away most ADC samples…

![Diagram of Fixed Frequency Clock LLRF Implementation](image)

Note: f_{MO} is used as Clock Enable rather than Clock, when continuously high the system runs at f_{FIX}.
Fixed Frequency Clock LLRF Implementation (2)

RF Receiver, 2nd idea:

- Clock all elements, including CIC integrator with f_{FIX}
- Tune CIC filter notches (comb) to f_{rev} harmonics using Clock Enable f_{MO}
- Now need to tune NCO FTW
- All ADC samples used!

\[f_{\text{FIX}} \leq f_{\text{MO}} \]

\[f_{\text{FIX}} = h_{\text{base}} \times f_{\text{rev}} \]

\[f_{\text{FTW}} h_{\text{x}} = f_{\text{rev}} \times 35 \]

Am I forgetting something?

- Decimation
- Full Data rate
- Reduced Data rate

122.7 MHz

MDDS

VXS

FTW

h_{\text{x}}

f_{\text{rev}}

35 (M)

h_{\text{base}}

2

\[f_{\text{FTW}} h_{\text{x}} = f_{\text{rev}} \times 35 \]

\[f_{\text{MO}} = h_{\text{base}} \times f_{\text{rev}} \]
Fixed Frequency Clock LLRF Implementation (3)

RF Receiver, 2nd idea:
- Clock all elements, including CIC integrator with f_{FIX}
- Tune CIC filter notches (comb) to f_{rev} harmonics using Clock Enable f_{MO}
- Now need to tune NCO FTW
- All ADC samples used!

![Diagram showing the implementation of the RF receiver and CIC filter](image)
Fixed Frequency Clock LLRF Implementation (4)

CIC Gain Compensation:

\[G_{CIC} = RD(f_{rev}) = \frac{f_{FIX}}{f_{MO}} D = \frac{f_{FIX}}{h_{base} \cdot f_{rev}} \cdot 2^N h_{base} \]

\(N \) = Differential delay shift control (0=notch at \(f_{rev} \))

From slide 10 we have:

\[f_{FIX} = \frac{2^{32}}{M} = \frac{2^{32}}{35} \]

And finally the required compensation gain:

\[G_{comp}(f_{rev}) = \frac{1}{G_{CIC}} = \frac{f_{rev} M}{2^{32+N}} \]

- Simply proportional with \(f_{rev} \) (as expected)
- Exactly equals the normalised FTW for harmonic 1!
Fixed Frequency Clock LLRF Implementation (5)

RF Receiver, trial 2nd idea:

- Added CIC Gain correction
- **Behind** the CIC to keep full precision (at the cost of a DSP48E)
CIC Comb filter temporal quantisation effects:

- \(F_{MO} \) pulses follow the average \(f_{rev} \times h_{base} \) but will jitt by \(T_{FIX} \)

\[
\begin{align*}
\theta &= 2\pi \frac{T_{FIX}}{T_{rev}} = 2\pi \frac{f_{rev}}{f_{FIX}} [\text{rad}] \\
\text{Worst-case phase error on a sample}
\end{align*}
\]
CIC Comb filter temporal quantisation effects:

Considering the difference of sine wave we can write the following general equation:

\[\sin(x) - \sin(x + \theta) = c \cdot \sin(x + \phi) \]

Magnitude harmonic leakage at the CIC filter output \(\propto c \)

\[c(\theta) = \sqrt{2 + 2 \cos(\pi - \theta)} = 2 \left| \sin \left(\frac{\theta}{2} \right) \right| \]
CIC Comb filter temporal quantisation effects:

Plot of the attenuation of the first f_{rev} harmonic as function of f_{rev}.

Note: Additional attenuation (6dB / Octave) due to 1st order integrator (CIC input) not accounted for.

Overall harmonics attenuation expected to be independent of the frequency.
Fixed Frequency Clock LLRF Implementation (9)

Final Receiver:

Note: A Post Filter (averaging) has been added to reduce the data rate to near that of the DSP.
Fixed Frequency Clock LLRF Implementation (10)

Final Modulator:

122.7 MHz

MDDS

VXS

122.7MSPS

Common for all channels

MDDS

VXS

122.7 MHz

FTW

FTW

h_1

VXS

f_{FIX}

f_{FIX} = h_{32} \times f_{rev}^{[31]}

f_{MO} = h_{32} \times f_{rev}
Results (1)

ELENA Longitudinal Pickup (LPU) during deceleration

Stable phase shift

Radial Steering

Measured I/Q

Frequency
Results (2)

ELENA Longitudinal Pickup (LPU) with extremely low signal level

Measured I/Q
400 S/s

Beam Signal Lost

-60dB FS
-80dB FS

360kHz
330kHz
300kHz
Results (3)

VGAP (H2) Measurement: Post Filter noise reduction $f_{rev} > 240$kHz

- Red = Q: 200mV/div
- Yellow = I: 5V/div
- Green = f_{rev}: 500kHz/div

- $F_{rev} = 960$kHz
- $F_{rev} = 240$kHz
References

• [2] LLRF 2013 Lake Tahoe: A Leading-edge Hardware Family for LLRF and Diagnostics applications in CERN’s Synchrotrons, J. Molendijk et al.
Conclusion

Fixed Frequency operated VXS LLRF
- Successful operation (ELENA commissioning) since early this year
- Further tests using CERN PSB test-crate connected to ring 4 foreseen 2018
- Deployment to all small machines (PSB*, LEIR, AD*) during the long shutdown (LS2) starting 2019

* To be equipped with Finemet cavities during LS2
Backup Slides
Original Sweeping Clock LLRF Implementation

Master DDS
- Ref
- Synth
- Tune

Slave DDS
- Ref
- NCO
- I/Q
- DAC

RF Clock 67.5 - 125 MHz

Cavity drive 0.6 - 1.75 MHz

Base-band I/Q Signal Processing
- Cavity Return
- Hbase
- Drive I/Q

Frequency Program
- Phase Loop
- Radial Loop

Timing

B Field

PSB C02

Beam Phase Pickup

Radial Pos Pickup

10 MHz

RF Clock 67.5 - 125 MHz

Cavity Return

DDC
- Ref
- NCO
- I/Q

Cavity Return

Cavity Return

Cavity Return

Cavity Return
Results

Fixed Frequency operated CIC filter response (w.o. post-filter)

262kHz/notch
Fixed Frequency Clock LLRF Implementation

CIC Filter

\[Z^{-1} = \frac{1}{h_{\text{base}} \cdot f_{\text{rev}}} \]

Main mixing products

\[a[\cos(f) + \cos(h2 \cdot t)] \]

Integrator

R = \(2^N\)

Comb

Gain Correction

\[I = a \cdot \cos(f) \]

Typical Response

262kHz/notch

0dB

-50dB

CIC Naming conventions, R, D, according to [3]
Results

ELENA Longitudinal Pickup (LPU) with extremely low signal level

-80dB FS

Measured I/Q

Beam Signal Lost

18/10/2017

LLRF17, O-22
Fixed Frequency Clock LLRF Implementation (4)

CIC Bit Growth:
- Depends on the maximally expected decimation
- Depends on the differential delay

\[b_{grow} = \log_2 (RD) \]

Bit growth for a first order CIC

Substituting R and D from slide 14 we get:

\[b_{grow} = N + \log_2 \left(\frac{f_{FIX}}{f_{rev}} \right) \]

N = Differential delay shift control

Example:
- \(b_{grow} = 14 \)
- \(N = 0 \)

\[f_{rev} \geq f_{FIX} \frac{2^N}{2^{b_{grow}}} = \frac{122.7[MHz]}{2^{14}} = 7.5[kHz] \]

Example: smallest \(f_{rev} \) in ELENA decelerator \(~140kHz\) -> N=4 still allowed