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The Cornell-BNL ERL Test Accelerator is a 4-turn energy recovery Linac with a FFAG

return loop.
Injector Linac ) o Main Linac
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The injector cavities are powered by The Main Linac cavities are powered by
Klystrons capable of delivering a forward solid state amplifiers capable of delivering a
power of 100kW. forward power of S5kW.
100 L
T 50 —2 kW The peak detuning of the cavity must
—3 . .

< 2 ko be less than 54 Hz in order to sustain

£ 60p : o a cavity voltage of 6MV using a power

g amplifier capable of delivering 5kW.

N We’re going to focus on the Main Linac

5 10 15 20 cavities for the rest of this presentation.
Accelerating Voltage (MV)
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Microphonics measurements are commonly visualized in two ways:
* Histograms: These show peak detuning values without any frequency information.

« Spectrum Plots : These show the average contribution of different frequency components.
Which frequencies actuallv contribute to neak events?
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« The same frequencies appear for stiffened cavities as in the plot of RMS detuning.
« However, some peak events are very wide-band in the un-stiffened cavities and would be much
harder to compensate.
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Fast tuners driven by piezoelectric actuators are use to compensate for detuning.
Assuming that the tuner is a Linear Time Invariant system, we can measure a transfer

function.
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Observations:
1. Phase response is almost 0° up to 20Hz, this makes it ideal for proportional integral feedback
control.

2. For higher frequencies of the phase response is very noisy. At the mechanical resonance modes,
the phase changes by 180°. This is what makes compensation tough!
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Proportional Integral Feedback Loop

1. First use a low pass IIR filter (2"d order Butterworth) to attenuate high frequency
components.

2. Apply proportional integral control on the low passed signal.
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Band-pass filter Feedback loop
Use band-pass filters coupled to phase shifters to compensate for specific frequency

components.
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Three parameters have to be adjusted for each frequency. Getting to the optimal settings is

not easy.
Not successful in first try!
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* Most of the vibration energy is concentrated near several frequencies.
« The compensation system must put out sinusoidal signals at these frequencies at the
correct amplitude and phase so that the microphonics detuning due to the vibrations get

cancelled.
* The Least Mean Square (LMS) algorithm adjusts the amplitude and phase of these
signals in order to minimize the mean square of detuning.
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Algorithm requires three parameters: w,,, My, P
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The algorithm was applied on three frequencies: 8 Hz, 40 Hz and 80Hz.
The parameters were adjusted manually by looking at the detuning signal.
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Algorithm is stable! Reduced peak detuning from 30.2 Hz to 15.5 Hz.
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The same algorithm was applied on the same frequencies as earlier.
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However, manual adjustment of the transfer function phase proved
inadequate.

The phase ¢, must be determined automatically!
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The transfer function phase which was an user defined parameter must also
be determined by the algorithm. Apply the LMS technique to get the phase.
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« Peak detuning without compensation measured at 1MV: 137.4 Hz; with
compensation measured at 4MV: 61 Hz

* In the modified algorithm, the estimated transfer function phase slowly oscillates
around some optimal value.

« The oscillation becomes worse, if the Q of vibration peak is low and the algorithm
becomes ineffective.
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« The main linac cavites used for energy recovery in the CBETA project are powered by
solid state power amplifiers capable of delivering up to 5kW which restricts the
maximum allowable detuning to 54 Hz in order to sustain a cavity voltage of 6 MV.

« Microphonics detuning measurements on the main Linac cavities indicate that while the
peak detuning in stiffened cavities is well below the limit of 54 Hz, microphonics the un-
stiffened cavities (>130 Hz) needs to be reduced.

* Low frequency microphonics (sub Hz) can be effectively compensated by using
proportional integral feedback control on the detuning signal processed by a low pass
filter.

 The frequency domain Least Mean Square technique compensates for detuning by
controlling the amplitude and phase of the actuator signal using gradient descent on
mean square detuning.

« The algorithm was applied successfully to a both a stiffened cavity (33 Hz to 15.5 Hz)
and an unstiffened one (137 Hz to 61 Hz).

* More work needs to be done to improve transfer function phase estimation.
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1. Find the Discrete Fourier Transform the whole signal.

2.
3.
4

Make all coefficients of the Discrete Fourier Transform zero which are greater than some frequency f.
Do the inverse Fourier transform of this modified DFT and find the absolute max value of this signal.
Repeat for many frequencies.
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1. Use alow pass filter with an integrator to take care of low frequencies.
Something similar is already done in the current version of the control
system. 7

e

@7+ 2]

Hypr =

w, Is the -3n dB cutoff frequency.
n is the filter order, higher order corresponds to a steeper roll off.

2. Use band pass filters to suppress specific frequency components.
Ky +@) 1°
Hpp= | —5 —
&+

w, Is the center frequency.

n is the filter order, higher order corresponds to a steeper roll off.
P, is setto O.

Q controls the width of the filter.
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To shift a signal of frequency f. by a phase ¢., we can just shift the signal by
some number of samples given by: N fs¢e

- 27rfc
For f, = 8 Hz and ¢_ = 150°, the total buffer length is N = 102. Allocating a buffer
of this size for each of the 10 frequency channels requires more memory than
what we have left. We have two options:

1. Switch to a different memory allocation scheme. However, we will still be
limited by the maximum buffer length available.
2. Use a4 tap FIR filter, i.e. use four coefficients. Then the filter response is

given by: 4 or f
H(f) Z an,; em?_f‘s_
1=1
Constrain the filter with the conditions:
' dH
H(fc) = o' af =0
Fl=f.

The constraints give us 4 constraints, to solve for the a,,;,. We still have the
freedom to choose the placement of the filter taps n,. So we can optimize for
least memory use.
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ldea: Treat this as a real time least squares optimization problem.

Actuator Signal: |72 (tn) = Z Inn cos Wintn+Qmn sinwnlty

1

Assuming that the tuner is a LTI system the detuning can be written as:

0 feomp(tn) = O foxt(tn +Zam{fmn o8 (Wit — Om )+ Qn SIN(Winty — D) }

Where, a, and ¢, describe the transfer function from actuator to detuning at
the frequency w,,.

Mean Square Detuning:  F,, = E[{8 feomp(tn)}] ~ {8 feomp(tn)}?

Minimize the mean square detuning using a gradient descent algorithm.

Im,n—l—l — Im,n — ;uméfcomp (t ) COb(wm gbm)
Qm,n—l—l — Qm,n — Hm5fcomp (tn) bln(wm n gbm)

w, K, and @, are fixed by the operator.

Iﬁbm,n—kl — ‘,ﬁ'm,n _”méﬁzomp(tn){fm,n—kl Sin(wmtn _‘;Dm) _Qm,n—|—1 COs (wmtn _Qljm)}
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The basic LMS algorithm is summarized in the following equations:

Im,n—l—l — Im,n — Hmfgfcomp( ) COb(wm Cbm)
Qm n+l1 — Qm n Mméfcomp( ) bln(wm gbm)
Upz(tn) = Z I €08 Wi tn+Qmn SIn wmtn

Now assuming (1) Method is continuous. (2) There is no phase lag involved.

. t |
welt) = = 3 kel e [ eyt
m .

This is clearly Linear.

To understand how LMS works, let’s see what it does to e(t) = As cos(wst + ¢s)

~ wg . .
Uy, (1) = — Z'umuﬂ —-Hs[sin(wst + ¢5) — sin(es)]
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The response of the LMS controller can be written as:

[l W
IClws)l =) ——
Ws — Wh,

™m

10

Amplitude (dB)
U

-50 1 I 1 1
0 40 50 80 100 150
Vibration Frequency (Hz)

The LMS algorithm is approximately equivalent to a set of band pass filters!

Douglas MacMartin, A feedback perspective on the LMS disturbance feedforward algorithm, American
Control Conference, 1994, 1994, pp. 1632-1636 vol.2, doi: 10.1109/ACC.1994.752347
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