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Voltage in an Hadron collider. Why? 
• In physics (constant energy), the power 

lost by synchrotron radiation is very 

small in hadron colliders. In the LHC it 

is 15 keV/turn at 7 TeV 

• In high intensity machines, collective 

effects dominate: The required RF 

voltage is derived from the required 

longitudinal emittance (< bucket area) 

that will keep the beam stable 

• In the LHC the longitudinal stability is 

governed by wide-band machine 

impedance (single bunch effect) 

• The estimated Imaginary part of the 

wide-band impedance is 0.065 ohm [1] 

• The HiLumi bunch intensity (2.2 1011 

p/bunch, t=1 ns) will be unstable if 

V<12 MV. 
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LHC single bunch instability 
threshold: 6.5 TeV, 12 MV. [2] 
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 Beam loading 
• Beam= charged particles in motion = current 

• Cavity=resonant impedance 

• Beam Crossing the cavity -> Beam induced electro-

magnetic wave called wakefield 

• The total voltage seen by the beam is the vector 

sum of the voltage due to the generator and the 

beam loading 
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• If the wakefield created by the passage of the bunch in the cavity has 

not decayed to zero by the next passage, it will act back on the bunch 

• If the gain/phase shift of this natural beam/cavity feedback is 

unfavorable, instability will arise: The bunch starts oscillating in the 

bucket 

• The situation gets worse if we have many bunches in the machine. The 

wakefield created by one bunch will act on the following one when it 

crosses the cavity, thereby creating coupling between the synchrotron  

oscillations of the individual bunches  

• This effect, very important in high intensity synchrotrons, can lead to 

coupled-bunch longitudinal instability  

 



Longitudinal Coupled-Bunch Instability 

• CERN CPS 

• Longitudinal CB oscillation of the 7 CPS proton bunches (2007) 

• Time in vertical (15 ms total), long profile from PU crossing triggered with fixed RF 

reference 

• The source impedance was believed to be the 10 MHz cavities, at fundamental 

From H. Damerau [3] 
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Conclusion: 

• We need RF voltage in Hadron collider… 

• ….and we need to compensate for beam loading. 

 



• CBI can come from all sorts of narrow-

band impedances around the machine 

(discontinuities in vacuum pipe, or 

HOMs – from cavities or kickers) 

• But when the cause is the cavity around 

fundamental, the LLRF can help 

much…and very economically 

• The LLRF must “discipline” the total 

cavity voltage, thereby reducing the 

effective impedance, that is the ratio of 

V/Ib 

• It must impose a field (Desired Voltage) 

and fight against the beam induced 

perturbation 

• A classic method is the use of a 

feedback loop around TX-Cavity [4] 

 

RF or Direct Feedback 

Beam Loading Compensation  
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Desired voltage. Two options 

• Brute-force discipline 
• Keep voltage constant during 

one turn in both amplitude 

and phase 

• Good for beam parameters 

(all bunches identical) 

• Very demanding in RF power 

as the klystrons must 

compensate for the beam 

current transients 

• Power scales linearly with 

beam current 

• Used in most high intensity 

synchrotrons since late 80s 

[5] 

• Psychology 
• Manipulate the beam by 

imposing a voltage that 

matches the beam-induced 

modulation [6] 

• Keep voltage amplitude 

constant during one turn 

(identical momentum spread, 

synchrotron frequency, IBS,..) 

• Enforce the exact phase 

modulation that the beam 

creates (modulation of bunch 

spacing) 

• Power is independent of 

beam current! 

• Very economical in RF power 
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Brute-force discipline. 2016 situation 
2244 bunches, 25 ns spacing, 1.2E11 p/bunch, 6.5 TeV 

• The cavity voltage and phase are kept constant during one turn ( 0.4% in 

amplitude, 1 RF degree in phase). Left plots 

• Very demanding in RF power as the klystrons must compensate for the 

beam current transients. Right plots 

• Klystron power toggles between 80 kW and 250 kW 

• Dynamic situation: Strong peaks during the beam to no-beam transients 
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Phase Modulation. 2017 situation 

Fill 5864, 2371 bunches, 25 ns spacing, 1.1E11 
p/bunch, 6.5 TeV 

• The cavity voltage is kept 

(almost) constant in amplitude. 

Left: 10 kV pk-pk compared to 

1.5 MV 

• The cavity phase is modulated 

along the turn (right).  

100 ps pk-pk 
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Phase Modulation. 2017 situation 

2371 bunches, 25 ns spacing, 1.1E11 p/bunch, 6.5 TeV 

• Klystron power modulation during one turn for B1 klystrons 1 to 4 

• The transients between beam and no-beam segments are barely visible 

• Small noticeable difference during the abort gap (no-beam) 
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Minimizing klystron power. Exact solution 

 

 

 

 

• We keep cavity voltage amplitude V0 constant, but accept a phase modulation 

• We assume that the beam current Ib(t) is in quadrature with cavity voltage (almost 180º stable 

phase in physics). Then the required klystron power can be written [7] 

 

 

 

 

• The instantaneous demanded power will be minimal (and constant) if the derivative of the 

voltage phase modulation is proportional to the envelope of the beam current ib(t) [7] 

 

 

 

 

 

• Then the power is constant and independent of  

    beam current…Great! 
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11.5 RF deg = 80 ps pkpk 



Mean power during fill 
• Top: Fill 5737 

• Old scheme 

• Power increases 

during ramp 

• Noise ripples caused  

by the beam/no beam 

transients 

• Power scales as beam 

current -> 190 kW at 

1.5 MV, 0.5 A DC 

• Bottom Fill 5887 

• New scheme 

• Power independent of 

beam current 

• Very small power 

change following 

beam dump 

• Power scales 

quadratically with 

beam voltage-> 104 

kW at 1.5 MV, QL=60k 
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Iterative algorithm   

 

 

 

 

 

• We have implemented an iterative method that adapts to slowly changing conditions (ramp, 

decreasing intensity in physics, change of bunch length -> Effect on RF component of beam 

current) [8].  

• We use Steepest Descent algorithm, that is we apply small corrections proportional to the 

gradient of the power w.r.t. the derivatives of the phase modulation. Time index n, iteration 

index k  

 

 

 

 

 

 

 

 

 

• The correction is proportional to the sine of the phase difference between klystron current and 

cavity voltage. We update the derivative of the phase modulation 

• Then we integrate the derivative over 1 turn and remove the mean, that will be adjusted by the 

tuning. 
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RF Performances 

• Voltage phase modulation switched ON June 4th, 2017 

• Above plot shows the power of all klystrons, plus beam intensity for all fills that made it 

to physics (injphys, preramp, …, stable), from June 3rd till now 

• All klystron power below 120 kW (except 2B2, @ 140 kW) 

 

 

Phase 
modulation 
operational 

Fine-adjust 
LLRF 

2B2 
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CMS feedback 

Fill 5856 
(25ns_2173b_2161_1872_1962_144bpi_17inj)  

 

• Time of collision modulation  

measurement: ∆ ≈ 95ps 

prediction:  ∆ = 97ps 
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Courtesy of C. Schwick, J. Boyd, LHC Physics 
coordinators 



Feedback: LHCb 
 

 

Fill 5856 
25ns_2173b_2161_1872_1962_144b_17inj 

 

 

• LHCb measures a shift of 

the vertex position in z 

 

• Agreement within 15% 

measurement: ∆ ≈ 6mm 

prediction: ∆ = 7.1mm 
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Courtesy of C. Schwick, J. Boyd, LHC Physics 
coordinators 



Conclusions 

• With the old scheme, the LHC klystrons are close to saturation with 0.5 A DC and will not 

cope with the HiLumi intensity 

• The Voltage Phase Modulation scheme is a very attractive alternative to the Fixed Voltage 

(also called Half Detuning)  scheme used from LHC start-up till June 4th, 2017 

• It provides the same performance in terms of Beam Stability caused by cavity impedance 

at fundamental 

• It gives the same uniform bunch parameters: RF limit on momentum aperture, synchrotron 

frequency, bucket area (longitudinal stability) 

• But it introduces a small modulation of bunch spacing, in the order of 70 ps pk-pk over one 

turn for a full machine-> some effects on Time of collision and z-vertex, observed by the 

experiments [8]  

• Full Detuning is in operation since Fill 5742 (June 4th) 

• The algorithm automatically adjusts to filling pattern, bunch intensity, bunch length 

• The required klystron power is close to the theoretical no-beam value. Very encouraging 

for HiLumi 
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Additional material 
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RF phase modulation 

• CavityPhaseMeanB1, B2 

• Phase of the vectorial sum of the 8 cavities of each beam, in RF degrees at 400.8 MHz 

 

Fill 5887 begin Stable Beams 
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In operation 
• Filling is done with phase modulation OFF (sequencer driven) 

• Phase modulation is switched ON before start ramp (sequencer driven) 

• It then tracks the acceleration ramp (change of voltage), with very slow adaptation (time 

constant > 30 seconds, adiabatic to the beam, and slower than tuner reaction ~1s)  

• It stays ON till dump, adapting to the variation of bunch intensity (and length). 

Phase modulation Min-Max for the 8 cavities Beam 1. Fill 5887  
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