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Outline

« Demands for high power, high efficiency RF

 Vector control schemes for magnetrons
« Experimental results
* Ongoing research
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Take-a-ways from the Proton Driver High Efficiency
Workshop at PSI

* Proton Drivers:
- GeV-energy range
- MW-beam power range

* Applications: neutrinos, muons, neutrons, Accelerator Driven
Systems(ADS).

« Types of accelerators for proton drivers:
- Cyclotrons and Fixed-Field Alternating Gradient accelerators (FFAG);
- Rapid Cycle Synchrotrons (RCS);
- High intensity pulsed linear accelerators;
- CW Superconducting RF linear accelerators.

« High RF efficiency is critical for high beam power application
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The basics of magnetron operation

Cathode at negative potential
accelerates electrons outward.

B field causes electrons to spiral

E field across gaps causes bunching into
electron cloud spokes. Rotating spokes
intern excites cavities. RF power is
coupled out and is constant amplitude.

RF Output

RF Inpuy

Injection Locking:

RF maybe driven in on same port and
cause the spokes to phase lock up to
source providing low noise RF

Cross section of a cooker
magnetron showing cathode
and RF cavities

R. Adler, A study of locking phenomena in oscillators, Proc. IRE and b
Waves and Electrons, vol. 61, no. 10, pp. 351-357, June 1946.
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Magnetrons excel at many RF source requirements

Power: >100 kW CW and MW scale pulsed operation
— average power capability increase with lower frequency

Efficiency: High power devices > 85% at L-band
Power supply voltage: typically < 25kV
Low cost: $0.50/watt at 100kW and 50 units

Small size: 100 kW pulsed 1300 MHz tube is <1 foot high and
does not require an oil tank

They are easy to replace and rebuild and can be designed for
a reasonably long life and low noise when injection locked

However, they are basically a constant power device, not a
linear amplifier like a klystron
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Industrial CW Magnetrons

Table 1. Characteristics of CW Industrial Heating Magnetrons from Domestic Manufacturers 7

Manufacturer = Type*= Frequency 7| Power 7| Effic7 | Voltage®| Current*
(MHz)= | kW)= | (0)® | kV)= | (A)*"

California Tube Labs® | CWM-300L 7| 915*# 300*= 90~ 32n 10=
California Tube Labs® | CWM-100L = 896,915= | 100*= 88 = 19.5= 5.8=
Burle Technologies - S94608E = 896,915= | 90= 85H 21%= 6.51
CPI Beverly = 915MHz-75%5| 915#8 100 = 85= 20# 6.0
California Tube Labs® | CWM-15s= | 2450*" 151 721 12.6"1 1.7H
California Tube Labs™ | prototype™ | 2450*= 30= 1 1 1

« High power CW magnetrons used for

industrial heating are catalog items
+ > 85% efficiency typical
100 kW L-band - 18” length, 5” diameter
3F Fermilab
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Phase control loop around SRF cavity

Lancaster: Amos Dexter, Graeme Burt and Chris Lingwood

Demonstration of CW 2.45 GHz magnetron driving a

specially manufactured superconducting cavity in a VTF
at Jlab.
Control of phase in the presence of microphonics was

successful.

» N
>

H. Wang et al., “USE OF AN INJECTION LOCKED MAGNETRON TO DRIVE A SUPERCONDUCTING RF CAVITY,” in Proceedings of

IPAC’10, Kyoto, Japan, THPEBO67.
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Cascaded magnetrons and out-phasing AM control

Concept: cascade injection locked Matched loads
magnetrons to increase gain, combine two
pairs to get amplitude control by
outphasing in pulsed mode operation

41 Circulators

Outcome: Proof of concept for cascade

stage and the realization that we needed

CW power supplies to make real progress. Low-power  High-power 1
. ) magnetrons magnetrons| 3

Strong belief that this scheme would work

but it does have its complexities. ( ) 4 ﬁ;gr?d

) combiner

Input Il
1

Grigory Kazakevich, et al. Muons Inc.

Yakovlev, Pasquinelli, Chase, et al. Fermilab 4 4] Cireulators

Matched loads
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Amplitude control by fast phase modulation technique

Magnetrons are constant output power devices. However, the power in the
carrier destined for the cavity can be reduced by fast phase modulation,
moving power from the carrier into discreet Bessel sidebands that are outside
the cavity bandwidth. These sidebands will be reflected from the cavity and

back to the circulator load

Increasing the modulation
depth(137 degrees) suppresses
the carrier over a measured 64
dB dynamic range in lab
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Rejection of PM sidebands by Narrowband Cavity

While output power is constant, sinusoidal phase modulation
creates discrete sidebands at multiples of the modulation
frequency while the power shifted from carrier to sidebands is

determined by modulation depth

A

1]

— Cavity response
— Fundamental
— PM sidebands

[ 1.
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Phase Modulation Equations
Acos(wot + bsinwpt) = Ady(B)coswot+

Jor (B)[sin(we + 2kwr )t + sin(we — 2kwy )t +

ot

(e,

Jok+1(B)|cos(we + (2k + Vwpas )t — cos(we — (2k 4+ 1)way )t

i

0

2 54 56
JoB)=1-5+ 55~ 22

Used for generation of amplitude-to-phase LUT. Generates a lookup table such that the region

Before the first null in the Bessel is covered by the controller. Allows for linearization corrections
by just adding a scaling table.

Jo(B) —a=0
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Bessel of the first kind, Region before first null

1.0

0.8

Amplitude (alpha)
o
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o
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T
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beta

Inverse function in look up table drives phase modulation
depth to linearize cavity drive
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LLRF controller for 2.45 GHz SRF cavity driven by 1.2 kW
Magnetron using Fast Phase Modulation

Magnetron Amplitude and Phase Control System
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Controller architecture

Phase Control fg =61.25MHz
Upper Limit
Phase
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* Output
Phase Control Amplitude
Lower Limit Setting
Phase Set Point
| (ORS A |
> 5 il L
Q A - o Q
Iss SW
Amplitude hAmp”tU(Cjiel to Phase Modulation
Pl Contraller —— Phase Modulation —— Frequency
Depth Converter Generator
Amplitude Set Point
3£ Fermilab

Brian Chase | LLRF2017 | Barcelona 101717



Injection Locked 2.45 GHz magnetron driving SRF cavity

Commercially procured 2 45 GHz 1.2 kW magnetron
Loaned SRF cavity from JLab

“Testing took place over one week period in July 2014.
N Published in JINST
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A0 VTS 2.4 GHz Magnetron - Cavity test results

. et 10 dBn Atten 20 dB
- Amplitude control shown n ! *
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. ] Cavity at 4 K, LLRF drive. Blue loops open,
time with the test cave Red loops closed and maximum output, Green

loops closed and amplitude reduced by 17 dB
shows the PM modulation is effective for
amplitude control.
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Phase Modulation Tests on 1300 MHz 9-cell Cavity

« 9 cell cavity is driven by
a phase modulated
source through a 4kW
solid state amplifier

ETrg
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CCR/CPI - 100 kW Pulsed, 10 kW Ave. 1.3 GHz Magnetron

kv

Calabazas Creek Research Inc

Phase Il SBIR grant to develop a 1.3 GHz, 100 kW
peak power, 10 kW average power magnetron
station in partnership with Fermilab and
Communications and Power Industries LLC, utilizing
a full vector control scheme developed by Fermilab.

25
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0 2 4 6Amps

V-l Characteristics of Magnetron at
Varying Electromagnet Current
Values from initial short pulse tests.
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CCR 1.3 GHz 100 kW magnetron testing at HTS Fermilab

Isolator with shorting plate

i/ /

Diagnostics
and control

High voltage

modulator | m = .

not shown | (T . — ¥
/

Klystron

=
100 kW Magnetron
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LLRF Digital Control Card for Phase Modulation Scheme
(16) 14 bit ADCs (8)14 bit DACs  System on Module

Dual core Arm
processor

with FPGA eliminates
the need for a crate
and external
processor.
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Testing Status

« Magnetron cart shipping and installed at HTS

— Water cooling, 208VAC power, high voltage pulsed modulator
cabled

« 5 kW klystron CW powered up and driven with pulsed RF
— Ready for safety review and testing with 22 kV modulator

* Near term plans are to fully characterize the injection locked
magnetron
— Power curves and efficiency

— Magnetron self heating as a function of modulation depth and
frequency

— Power supply sensitivity

* Drive 9-cell cavity when available
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Magnetron Control R&D moving forward

Cathode current control is a logical choice for slow amplitude
control to optimize efficiency for operating conditions
— there is potential for moderate bandwidth with switch-mode PS
— should be a part of any scheme

Vector addition and out-phasing of two magnetrons should work for
most designs
— at the cost of hardware complexity and moderate control complexity

RF vector control through fast phase modulation is a potential fit for
many machine designs

— single tube design with greatest hardware simplicity
— at the cost of control complexity

All techniques need development time on a stable test platform
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Summary

The magnetron has been a remarkable RF source for 75 years that
is unparalleled in cost and highly efficient. It is widely used for
iIndustrial heating and smaller electron accelerators but has had
little impact in hadron accelerators

There are now several control architectures that can take
advantage of the processing capabilities of modern FPGAs

Testing is in progress with1.3 GHz 100 kW 10% duty factor
magnetron and controller using fast phase modulation.

Magnetrons may be a strong contender for high power, high
efficiency accelerators
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Thank you for your attention!
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Backup slides
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Efficiency Goals

ADS Accelerator Efficiency

n,Gk 1
PGR1D=1)beam|: 11_](; _77

acc

For a typical ADS (Rubbia) the first term is
of the order of 50

(J The electric power to run the accelerator must be small compared
to the power produced in the ADS core:

L <<50=n__>>0.02

nacc
' Minimumis n, = 0.2, but n, . = 0.4 should achievable and in that
case the accelerator takes only 5% of the electric power produced
by the ADS, which seems reasonable

(J For very high power beams (= 10 MW), every MW saved matters,
and it is useful to have the highest possible accelerator efficiency, if

it does not compromise other properties (cost, reliability, etc.)
iTl EC Revol/PSI/2016

« For high power SRF linacs the RF sources are a key
component in overall wall-plug efficiency
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e Groups with recent work on/relevant to cross
(.-3—. ; field devices for accelerators ¢>

Th e Lu;l- f In

Phase locked magnetrons

Varian Associates (MA) (1991) Treado, Hansen, Jenkins (Short pulse)

Univ. Mitchigan (-2013) Gilgenbach et al. (Relativistic Magnetrons)
Univ. Lancaster (2003 — 2010) Dexter, Tahir, Carter, Burt (CW Cooker type)

J-Lab (2006 - 2013) Wang (CW Cooker type)

Muon Inc. , Fermi-Lab & (2007 — 2013) Kazakevich, Yakoviev (Power combining)

Efficient L Band Magnetrons
SLAC, CTL, Raytheon Tantawi et al. (2004) (CW Coaxial? 300kW)
Diado Instit. Tech. Japan (1991) Shibata (1991) (CW Coaxial 600kW

Gyro Klystrons
IAP Nizhny Novgorad Lebedev

Univ. Maryland Lawson
Calabazas Creek

Gyro TWT
Univ. Strathclyde

MIT

IAP Nizhny Novgorad

Univ. Maryland

NRL Washington

Univ. Mitchigan Amos Dexter LANCAS H%
7
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Tiara Workshop on RF power generation for accelerators, Uppsala 2013




A0 Vertical test stand, Jlab 2.45 GHz single cell undressed
cavity RF block diagram
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1950s transmitter using 2 magnetrons and out-phasing
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