

LCLS-II LLRF Prototype Testing and Characterization

Larry Doolittle, Brian Chase, Joshua Einstein-Curtis, Carlos Serrano LLRF'17, 2017-10-16

Outline

- A little background on LCLS-II LLRF Design
 - DSP algorithms
 - Hardware partitioning
 - Frequencies
 - Thermal design
- Chassis performance
- Test results from FNAL CMTS
 - Field control
 - Resonance control
- Summary and parting comments

Resonance Control and Quench Detect

Real and Imaginary component of A (units s⁻¹) in cavity differential equation

$$\frac{d\vec{V}}{dt} = A\vec{V} + B\vec{K} + C\vec{I}$$

gives Q_L and cavity detune frequency. Compute this inside FPGA for quench detect interlock and running the tuning loop.

Explicitly (without beam)

$$A = \frac{1}{\vec{M}_V} \cdot \left[\frac{d\vec{M}_V}{dt} - B'\vec{M}_K\right]$$

where B' has to be calibrated *in situ*. Has been tested in hardware.

Field control: SEL controller

• Real Delayen-style with amplitude and phase PI loops, smoothly turns itself into a GDR if there is enough forward power available

- Analog versions have a long history
- Similar digital version used at JLab
- Well-exercised in simulation

Simplified block diagram of DSP path for field control loop

Simplified hardware architecture

Simplified hardware architecture

Simplified hardware architecture

Frequency Relationships for Near-IQ Sampling

 $f_{\rm RF} = 1300 \text{ MHz}$ $f_{\rm Clk} = 94.3 \text{ MHz} = f_{\rm LO1}/14$ $f_{\rm IF1} = 20 \text{ MHz} = f_{\rm Clk} \cdot \frac{7}{33}$ $f_{\rm LO1} = 1320 \text{ MHz} = f_{\rm RF} \cdot \frac{66}{65}$ $f_{\rm IF2} = 145 \text{ MHz} = f_{\rm Clk} \cdot \frac{203}{132}$ $f_{\rm LO2} = 1155 \text{ MHz} = f_{\rm LO1} \cdot (1 - \frac{1}{8})$

Unusual Split-LO design bypasses usual compromises in choosing IF

- Low 20 MHz IF for receiver reduces crosstalk & sensitivity to ADC clock jitter
- High 145 MHz IF for transmitter improves output sideband-select filter
- Circumvents usual problems with isolation between drive and input IF
- \bullet Receiver IF near middle of first Nyquist zone of 94.3 MS/s ADC
- Full TM $_{010}$ passband (1274-1300 MHz) fits in first Nyquist zone of ADC
- Transmitter IF near middle of second Nyquist zone of 188.6 MS/s DAC

Thermal Design

One rack supports 4 cavities Total chassis power dissipation estimate/budget: \sim 50 W/chassis \times 5 250 W / 3 K / $\rho c_P = 0.064 \text{ m}^3/\text{s}$ 0.064 m³/s \cdot 10 Pa = 0.64 W

Front of rack can be opened for access to test points, without totally breaking airflow pattern and thermal management

Chassis assembled

Chassis phase noise

Measured at 1300 MHz using passive splitter and short cables to two Rx inputs.

Chassis phase noise

Note 1 Hz high-pass included to represent beam-based feedback and to avoid logarithmic singularity of 1/f noise integral to DC.

Rack-under-test installed at FNAL CMTS

Crosstalk

Intrachassis crosstalk -90 dB, interchassis crosstalk better than -120 dB

Phase-locking SEL w/IQ-clip works as intended

LLRF'17, Oct. 16-19, 2017

PI Gains can be set for reasonable transient

Response to 0.5% amplitude step in setpoint, slew-rate-limited due to clip limits and cavity pole.

In-loop phase noise

Out-of-loop phase noise

F1.3-03 Cavity 2 out-of-loop -7.2 dBFS; phase error: 1.63e-03 degrees rms (0.1 Hz - 5.0 kHz) 170705_1730_lcls2

Phase noise comparison

Phase noise near closed-loop bandwidth, $K_P \approx 150$

trace39: -9000 -4000 -19500 -4000

LLRF'17, Oct. 16-19, 2017

Phase noise near closed-loop bandwidth, $K_P \approx 300$

Phase noise near closed-loop bandwidth, $K_P \approx 600$

trace41: -9000 -4000 -19500 -16000

LLRF'17, Oct. 16-19, 2017

Cavity Phase noise spectra comments and caveats

- Signal strengths are different for the three curves
- $\bullet~11.3\,MV/m$ was administrative limit for that testing session
- \bullet Crosstalk from forward and reverse probes in FNAL system explains amplitude discrepancy for microphonics peaks; corresponding crosstalk on LCLS-II system is demonstrated < -129 dB
- $\bullet \ 1/f$ components appear as expected
- FNAL CMTS installation not set up to test drift behavior

Superficial conclusion is not wrong:

- Field out-of-loop error $<0.018^\circ$ peak-peak, 0.0016° rms, in 0.1 Hz to 5 kHz, better than spec; leaves margin for:
 - larger closed-loop bandwidth (goal 20 kHz)
 - phase-reference-line contribution
 - beam-loading effects
 - larger microphonics (this cavity had about 60% of detuning "spec")
 - unknowns

Detune input data

Two independent systems (sharing LO) collecting cavity and forward Unknown relative phases and calibration

Detune normalized result

Two independent systems (sharing LO) collecting cavity and forward One hand-fit parameter, to time-align the two data sets

Active Resonance Control experiments

Resort to this after running out of passive vibration control measures

Resonance Control

Many pieces tested individually:

- RFS measures detune frequency, independent of phase-locking
- Fiber communcation from RFS to Resonance chassis
- DSP filter banks set up to suppress microphonics peaks (and DC mistuning)
- Piezo interface FPGA programming and hardware driver

Now it's a simple matter of running all those things simultaneously, and testing.

Conclusion

Tests on Prototypes give evidence this system meets stringent performance specs based on the high quality electron beam needed for an X-ray light source

More testing is (always) needed, still software to debug

Architecture is modern and modular, will form a reliable and operable part of the larger LCLS-II controls.

Thank You! Gracias!

LCLS-II LLRF Collaboration Team

- K. Campbell, L. Doolittle, Q. Du, G. Huang, J. Jones,
- C. Serrano, V. Vytla, LBNL
- S. Babel, A. Benwell, M. Boyes, G. Brown, D. Cha, G. Dalit, J. DeLong,
- J. Diaz-Cruz, B. Hong, R. Kelly, A. McCollough, A. Ratti, C. Rivetta, SLAC
- R. Bachimanchi, C. Hovater, D. Seidman, JLab
- B. Chase, E. Cullerton, J. Einstein, D. Klepec, FNAL

Field Control

Nominal setup that's expected to produce 0.01° / 0.01% total performance:

- 10 Hz detuning represents 0.62 reactive component, .62/.004 $^{\circ} \rightarrow$ 79 dB goal
- \bullet 20 kHz zero-dB crossing, with 16 Hz cavity bandwidth, 62 dB P gain
- 5 kHz control-system zero (transition to I gain), can give 34 dB additional gain at a hypothetical 100 Hz microphonic line (96 dB total, large but not crazy)
- 300 $\mu {\rm A}~{\rm step}$ = 12 MV \rightarrow 0.75 unitless transient
- Unit current loading step produces 0.07% error, 300 μ A step \rightarrow 0.05% \rightarrow need feedforward to cut effect by factor of 12 expect the beam stays in the pipe without feedforward

That's ideal-world physics and textbook control theory

 \bullet choose to build hardware with some margin, can at least scan gains and stay textbook-stable up to 40 kHz zero-dB crossing

Broadband feedback means fast recovery from transient events (gnome-kicks)

ADC selection

- \bullet > 94.3 MS/s (hard limit)
- \bullet < -155 dBc NPD (goal)
- \bullet > 95 dB crosstalk at 20 MHz (goal)
- < 200 ns latency (goal)
- differential signalling

• density and FPGA pin usage suited for sane construction and interfacing of 8-in 2-out board "value engineering"

	density	interface	SNR	P/ch	$crosstalk^1$	$latency^2$
LTC2175	$4 \times$	LVDS-ser	73.1 dB	140 mW	-84 dB	6
AD9253	$4 \times$	LVDS-ser	75.2 dB	110 mW	-106 dB	16
AD9653	4 ×	LVDS-ser	77.8 dB	164 mW	-102 dB	16
AD9268	$2 \times$	LVDS-par	78.2 dB	375 mW	-109 dB	12
LTC2107	1 imes	LVDS-par	79.7 dB	1280 mW	N/A	7
AD9656	$4 \times$	JESD204B	79.9 dB	197 mW	-104 dB	29+
AD9650	$2 \times$	LVDS-par	80.0 dB	390 mW	-109 dB	12

- 1. Estimated at 20 MHz
- 2. Cycles

Rejected exotic ADC techniques

- Multiple receiver/ADC lanes per cavity
 - $2 \times$ allows separation of Rx noise spectrum vs. cavity noise spectrum
 - $3 \times$ gives per-channel measurement of Rx noise spectrum
 - also 3 dB or 5 dB increased SNR
 - also 3 dB or 5 dB more in-chassis LO power
- Higher-end ADCs have as much as 4 dB better NPD, but need
 - many more FPGA pins, or high-speed-serial pins
 - more painful board layout and fab
 - more expensive FPGA
 - more heat dissipated near analog components

Feedback performance depends on group delay

Group	delay	\equiv	latency
-------	-------	----------	---------

(ns)

- 50 input analog BPF
- 170 ADC pipe (16 cycles at 94.3 MHz)
- 64 Precision Rx DSP (12 cycles at 188.6 MHz)
- 140 GTP and fiber latency
- 106 Controller DSP (20 cycles at 188.6 MHz)
- 1000 bandpass filter in DSP (160 kHz)
 - 70 notch filter in DSP (\sim 800 kHz for $8\pi/9$ mode)
 - 40 DAC (7 cycles at 188.6 MS/s)
 - 20 sideband selection filter
 - 170 Estimated SSA
 - 100 cables and waveguides
 - 70 contingency

2000 total, can sustain 40 kHz closed loop bandwidth