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• Fermilab  

– Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah 

Holzbauer, Dan Klepec, Yuriy Pischalnikov, Warren Schapper, 

Philip Varghese 

 

• India Department of Atomic Energy (DAE) 

– Gopal Joshi, Shailesh Khole, Dheeraj Sharma 

 

PIP-II LLRF Team 
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• PIP – II is a 20Hz, 800 MeV, 
superconducting H- LINAC 
that will replace the existing 
400 MeV copper LINAC 

• The primary goal of this 
upgrade is to increase the 
beam power available to 
neutrino experiments to 1.2 
MW  

• As part of the PIP-II R&D 
plan we are also building a 
test stand  
– Warm front end, HWR, and 

SSR1  

– Goal to test the chopper 
and the transition from NC 
to SC as well as prove out 
accelerator technology 

What is PIP-II 
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• RF field control of all LINAC Cavities capable of pulsed and 
CW operation 

• Multi-frequency Master Oscillator and Phase Reference lines 

• Beam Chopper Waveform Generator 
– RF locking source for Booster during beam fill 

– Timing source  

• Resonance control (microphonics and LFD) 

 

Overview of the PIP-II LINAC 
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Overview of the PIP-II LINAC 
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Frequency  
[MHz] 

Number of RF 
cavities 

Amplifiers 
per Cavity 

Pulsed / 
CW 

Solid State 
Amplifier 

Power [kW] 

Number of 
4-cavity 
stations 

RFQ 162.5 1 2 CW 75 1 (special) 

Bunching Cavities 162.5 4 1 CW 3 1 

HWRs 162.5 8 1 CW 3,7 2 

SSR1s 325 16 1 Pulsed 7 4 

SSR2s 325 35 1 Pulsed 20 9 

LB650s 650 33 1 Pulsed 40 9 

HB650s 650 24 1 Pulsed 70 6 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

Challenges for PIP-II 

11/9/2017 6 Jonathan Edelen | Low Level RF for PIP-II 



• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• LFD for four different cavity types 

– Superconducting cavities are narrow band 

– Operated in pulsed mode at 20 Hz 

– Power overhead is limited   

Challenges for PIP-II 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• LFD for four different cavity types 

– Superconducting cavities are narrow band 

– Operated in pulsed mode at 20 Hz 

– Power overhead is limited   

• Microphonics is unknown  

• International collaboration 

Challenges for PIP-II 
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LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 

Energy and phase 
sensitivity at the end of the 
LINAC caused by 
perturbations to the phase 
of individual cavities.  



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 

Energy sensitivity along the LINAC 
for phase errors introduced at 
frequency transitions: Here the 
phase errors are applied uniformly 
for each frequency type 



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 

 

Assuming we can calibrate phase and amplitude to ±0.5° and ±1% respectively, we 
can stabilize the energy to 10-4 through pulse-to-pulse beam-based feedback using 
the last cryomodule. 



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 

 



LINAC Energy Stability Simulations 
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• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• Static errors: Caused by calibration errors and drifts  

• Dynamics errors: Beam-loading disturbances and cavity detuning 

 



• Resonance control specifications for each cavity type 

 

 

 

 

 

 

 

• Meeting these specifications will be challenging  

– Passive measures to reduce df/dp looks promising  

– Active compensation currently being tested on SSR1 type cavities 

 

 

 

 

 

 

 

Resonance Control  
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• PIP-II nominal operating conditions 

– 12.5 MV/m 

– 20 Hz repetition rate 

– 15% duty cycle, 0.5ms flattop 

• STC operating condition 

– Greater than 12.5 MV/m 

– 25 Hz repetition rate 

– 7.5 ms fill, 7.5 ms flattop 

 

• 7.4 Hz RMS detuning on the flattop  

– Specification is a peak detuning 

of 20 Hz: Further improvement 

is needed  

 

 

 

 

 

 

 

 

Active Resonance Control Testing 
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• Significant progress has been 

made toward PIP-II specification of 

detuning. 

 

• Plan for incoming test at STC: 

– Improvements in feed back  

(automation of filter bank 

coefficients) should improve 

performance 

– May be possible to automatically 

extract optimal coefficients from 

delay scan data 

– Further firmware improvements 

should allow more detailed studies 

of pulse structure 

 

 

 

 

 

 

 

 

Active Resonance Control Testing 
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System conceptual design 

 Rack layout and module descriptions 
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LLRF System for PIP-II 
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LLRF Signal Chain for 4 cavities 
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Phase Reference Lines 

(162.5, 325, 650 ,1300 MHz) 
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Multi-frequency Phase References and Local Oscillators 
Being prototyped at BARC 

Jonathan Edelen | Low Level RF for PIP-II 



Chopper program generator 
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Chopper program generator 
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Synchronized Trigger Pulse 

Common Delay 

Delay between 
Helix 

Beam Bunch 

Falling Edge Adjustment Rising Edge Adjustment 

• Delay with respect to synchronized trigger 
– Compensate for cable lengths 

– Compensate for kicker driver delay 

– Internal delay of Arbitrary Waveform Generator (AWG) 

• Differential delay 
– Different characteristics of kicker switches 

Time Resolution <50 ps  
Trigger from control 

162.5 MHz 



Hardware status to date  

 Prototype measurements 
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• 20 MHz IF input -2 dBm max 

• 162.5, 325, and 650 MHz Output, +11 dBm max 

• 13 dB IF to RF Conversion Gain typ. 

• Channel to Channel Isolation > 88 dB 

• Spurious Signal Suppression > 80 dB 

• High isolation (>68 dB) TTL RF switch 

• Power Supply 6V, 1.8 Amp 

 

 4-Channel Up-converter 

11/9/2017 27 

-2

0

2

4

6

8

10

12

14

16

-15 -10 -5 0 5

R
F 

O
u

tp
u

t 
(d

B
m

) 

20 MHz IF Input (dBm)  

RF Output vs IF Input 

-10

-8

-6

-4

-2

0

2

-15 -10 -5 0 5

%
 E

rr
o

r 
(V

o
lt

s)
 

20 MHz IF Input (dBm) 

RF Output Linearity 

162.5 MHz

325 MHz

650 MHz

Jonathan Edelen | Low Level RF for PIP-II 



• RF input 162.5 MHz – 650 MHz 

• Less than 1% non-linearity up to 10 dBm RF input  

• 1.8, 2.1, 2 dB conversion loss @ 162.5, 325, 650 MHz 

respectively 

• Better than 82 dB Channel to Channel Isolation  

• RF, LO, IF monitor ports 

• Absorptive IF output low pass filter 

• Noise output floor of -161 dBc/sqrt(Hz) 

• Integrated output 1/f noise < 1.84 fsec, (0.02 to 20 Hz) 

• LO Input power of 3.1, 3.8, and 5.7 dBm @ 162.5, 325, 

650 MHz respectively 

• Power Supply 6V, 2.25 Amps 

 

PIP-II LLRF 8-Channel 

Downconverter Prototype 

28 11/9/2017 Jonathan Edelen | Low Level RF for PIP-II 

-15

-10

-5

0

5

10

15

-10 0 10 20

IF
 O

u
tp

u
t 

@
 2

0
 M

H
z 

(d
B

m
) 

RF Input (dBm) 

IF Output vs RF Input 

-10

-5

0

5

10

-10 0 10 20

%
 E

rr
o

r 
(V

o
lt

s)
 

RF Input (dBm) 

Output Linearity vs RF Input 

162.5 MHz

325 MHz

650 MHz



• To date we have operational experience with the RFQ and three 
bunching cavities  

• Left: Models of the RFQ LLRF system match well with 
measurements 

• Right: Phase and amplitude ripple on the amplifiers complicate 
frequency tracking mode (modified frequency tracking loop for 
copper cavities) 

Measurements from PIP-II injector test 
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• Feed-forward is used to reduce 
the beam-loading transient in 
the RFQ 

• Initial specification of 10-3 is met 

• Amplifier phasing is necessary 
to ensure proper match into the 
RFQ 

 

Measurements from PIP-II injector test 
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• Seven joint FRSs Approved (two more 
near approval) 
– TRS in process 

• 8-Channel Down-Converters 
– BARC version is in manufacturing 

process 

• 4-Channel Up-Converters 
– FNAL version tested 

– BARC version is in manufacturing 
process 

• FPGA Board 
– In schematic review process 

• ADC-DAC FMC Module 
– Ready for manufacturing 

• Resonance Control Chassis  
– Leverage from FNAL LCLS-II design 

and is in progress 

 

 

 

Progress of the IIFC collaboration 
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Up-converter module 

Down-converter module 



• Individual cavities regulated to 0.01%, 0.01 deg. RMS  

Energy regulated to 10-4 

• LFD for four different cavity types 

– Superconducting cavities are narrow band 

– Operated in pulsed mode at 20 Hz 

– Power overhead is limited   

• Microphonics is unknown  

• International collaboration 

Challenges for PIP-II 
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• PIP-II LLRF design conceptual design is mature and 

leveraged off of existing designs and past experience  

– Gaining experience from PIP2—IT as well 

– While specifications are tight, simulations indicate we will be 

able to meet these requirements  

– Our biggest challenge is LFD compensation  

 

Conclusions 
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