

Low Level RF for PIP-II

Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

PIP-II LLRF Team

• Fermilab

- Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah Holzbauer, Dan Klepec, Yuriy Pischalnikov, Warren Schapper, Philip Varghese
- India Department of Atomic Energy (DAE)
 - Gopal Joshi, Shailesh Khole, Dheeraj Sharma

What is PIP-II

LLRF2017 Low Level Radio Frequency Workshop

- PIP II is a 20Hz, 800 MeV, superconducting H- LINAC that will replace the existing 400 MeV copper LINAC
- The primary goal of this upgrade is to increase the beam power available to neutrino experiments to 1.2 MW
- As part of the PIP-II R&D plan we are also building a test stand
 - Warm front end, HWR, and SSR1
 - Goal to test the chopper and the transition from NC to SC as well as prove out accelerator technology

Overview of the PIP-II LINAC

- RF field control of all LINAC Cavities capable of pulsed and CW operation
- Multi-frequency Master Oscillator and Phase Reference lines
- Beam Chopper Waveform Generator
 - RF locking source for Booster during beam fill
 - Timing source
- Resonance control (microphonics and LFD)

🚰 Fermilab

4 11/9/2017 Jonathan Edelen | Low Level RF for PIP-II

Overview of the PIP-II LINAC

	Frequency [MHz]	Number of RF cavities	Amplifiers per Cavity	Pulsed / CW	Solid State Amplifier Power [kW]	Number of 4-cavity stations
RFQ	162.5	1	2	CW	75	1 (special)
Bunching Cavities	162.5	4	1	CW	3	1
HWRs	162.5	8	1	CW	3,7	2
SSR1s	325	16	1	Pulsed	7	4
SSR2s	325	35	1	Pulsed	20	9
LB650s	650	33	1	Pulsed	40	9
HB650s	650	24	1	Pulsed	70	6

7 Fermilab

LLRF2017 Low Level Radio Frequency Workshop

 Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
- LFD for four different cavity types
 - Superconducting cavities are narrow band
 - Operated in pulsed mode at 20 Hz
 - Power overhead is limited

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
- LFD for four different cavity types
 - Superconducting cavities are narrow band
 - Operated in pulsed mode at 20 Hz
 - Power overhead is limited
- Microphonics is unknown

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
- LFD for four different cavity types
 - Superconducting cavities are narrow band
 - Operated in pulsed mode at 20 Hz
 - Power overhead is limited
- Microphonics is unknown
- International collaboration

LLRF2017 Low Level Radio Frequency Workshop

 Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

Energy and phase sensitivity at the end of the LINAC caused by perturbations to the phase of individual cavities.

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

Energy sensitivity along the LINAC for phase errors introduced at frequency transitions: Here the phase errors are applied uniformly for each frequency type

🛠 Fermilab

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

Assuming we can calibrate phase and amplitude to $\pm 0.5^{\circ}$ and $\pm 1\%$ respectively, we can stabilize the energy to 10^{-4} through pulse-to-pulse beam-based feedback using the last cryomodule.

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
 - Static errors: Caused by calibration errors and drifts
 - Dynamics errors: Beam-loading disturbances and cavity detuning

Resonance Control

• Resonance control specifications for each cavity type

	HWR	SSR1	SSR2	LB650	HB650			
Sensitivity to He pressure (FRS), <i>df/dP</i> , Hz/Torr		<25	<25	<25	<25			
(measurements), <i>df/dP</i> , Hz/Torr	13	4.0	-	-	-			
Estimated LFD sensitivity, df/dE^2 , Hz/(MV/m) ²		-5.0	-	-0.8	-0.5			
(measurements), df/dE^2 , Hz/(MV/m) ²		-4.4	-	-	-			
Estimated LFD at nominal voltage (FRS), Hz		-500	-	-192	-136			
(measurements) at nominal voltage, Hz		-440	-	-	-			

* Two cavities were measured in a test stand. The results are: -1.82 and -1.3 Hz/(MV/m)².

- Meeting these specifications will be challenging
 - Passive measures to reduce df/dp looks promising
 - Active compensation currently being tested on SSR1 type cavities

Active Resonance Control Testing

LLRF2017 Low Level Radio Frequency Workshop

🚰 Fermilab

- PIP-II nominal operating conditions
 - 12.5 MV/m
 - 20 Hz repetition rate
 - 15% duty cycle, 0.5ms flattop
- STC operating condition
 - Greater than 12.5 MV/m
 - 25 Hz repetition rate
 - 7.5 ms fill, 7.5 ms flattop
- 7.4 Hz RMS detuning on the flattop
 - Specification is a peak detuning of 20 Hz: Further improvement is needed

Active Resonance Control Testing

LLRF2017 Low Level Radio Frequency Workshop

- Significant progress has been made toward PIP-II specification of detuning.
- Plan for incoming test at STC:
 - Improvements in feed back (automation of filter bank coefficients) should improve performance
 - May be possible to automatically extract optimal coefficients from delay scan data
 - Further firmware improvements should allow more detailed studies of pulse structure

System conceptual design

Rack layout and module descriptions

LLRF System for PIP-II

莽 Fermilab

LLRF Signal Chain for 4 cavities

LLRF2017 Low Level Radio Frequency Workshop

Phase Reference Lines (162.5, 325, 650, 1300 MHz)

Multi-frequency Phase References and Local Oscillators Being prototyped at BARC

🛟 Fermilab

Chopper program generator

Chopper program generator

🛟 Fermilab

- Delay with respect to synchronized trigger
 - Compensate for cable lengths
 - Compensate for kicker driver delay
 - Internal delay of Arbitrary Waveform Generator (AWG)
- Differential delay
 - Different characteristics of kicker switches

Hardware status to date

Prototype measurements

4-Channel Up-converter

LLRF2017 Low Level Radio Frequency Workshop

- 20 MHz IF input -2 dBm max
- 162.5, 325, and 650 MHz Output, +11 dBm max
- 13 dB IF to RF Conversion Gain typ.
- Channel to Channel Isolation > 88 dB
- Spurious Signal Suppression > 80 dB
- High isolation (>68 dB) TTL RF switch
- Power Supply 6V, 1.8 Amp

🛟 Fermilab

PIP-II LLRF 8-Channel Downconverter Prototype

- RF input 162.5 MHz 650 MHz
- Less than 1% non-linearity up to 10 dBm RF input ۰
- 1.8, 2.1, 2 dB conversion loss @ 162.5, 325, 650 MHz respectively
- Better than 82 dB Channel to Channel Isolation
- RF, LO, IF monitor ports •
- Absorptive IF output low pass filter
- Noise output floor of -161 dBc/sqrt(Hz)
- Integrated output 1/f noise < 1.84 fsec, (0.02 to 20 Hz)
- LO Input power of 3.1, 3.8, and 5.7 dBm @ 162.5, 325, 650 MHz respectively

IF Output vs RF Input

Power Supply 6V, 2.25 Amps

15

10

5

0

-5

-10 -15

-10

IF Output @ 20 MHz (dBm)

🚰 Fermilab

11/9/2017 Jonathan Edelen | Low Level RF for PIP-II

0

RF Input (dBm)

10

28

Measurements from PIP-II injector test

- To date we have operational experience with the RFQ and three bunching cavities
- Left: Models of the RFQ LLRF system match well with measurements
- Right: Phase and amplitude ripple on the amplifiers complicate frequency tracking mode (modified frequency tracking loop for copper cavities)

Measurements from PIP-II injector test

- Feed-forward is used to reduce the beam-loading transient in the RFQ
- Initial specification of 10⁻³ is met
- Amplifier phasing is necessary to ensure proper match into the RFQ

LLRF2017 Low Level Radio Frequency Workshop

Progress of the IIFC collaboration

- Seven joint FRSs Approved (two more near approval)
 - TRS in process
- 8-Channel Down-Converters
 - BARC version is in manufacturing process
- 4-Channel Up-Converters
 - FNAL version tested
 - BARC version is in manufacturing process
- FPGA Board
 - In schematic review process
- ADC-DAC FMC Module
 - Ready for manufacturing
- Resonance Control Chassis
 - Leverage from FNAL LCLS-II design and is in progress

Up-converter module

LLRF2017

Workshop

Low Level Radio Frequency

Down-converter module

- Individual cavities regulated to 0.01%, 0.01 deg. RMS → Energy regulated to 10⁻⁴
- LFD for four different cavity types
 - Superconducting cavities are narrow band
 - Operated in pulsed mode at 20 Hz
 - Power overhead is limited
- Microphonics is unknown
- International collaboration

Conclusions

- PIP-II LLRF design conceptual design is mature and leveraged off of existing designs and past experience
 - Gaining experience from PIP2-IT as well
 - While specifications are tight, simulations indicate we will be able to meet these requirements
 - Our biggest challenge is LFD compensation

