

Recent Developments of the Cornell LLRF System

Nilanjan Banerjee Cornell University

Overview

- 1. Introduction
- 2. Cornell LLRF Architecture
- 3. CBETA Requirements
- 4. Field Stability
- 5. Automatic Resonance Control
- 6. Summary

Introduction

LLRF2017 Low Level Radio Frequency Workshop

Cornell operates two accelerators:

- Cornell Electron Storage Ring (CESR) Storage ring operated as a light source. RF System: 500 MHz CW Beam Current: 130 mA
- 2. Cornell BNL ERL Test Accelerator

4-turn energy recover Linac. RF System: 1300 MHz CW Injector Current: 40 mA Main Linac Current: 320mA

Recent Developments of the Cornell LLRF System, October 16, 2017

Cornell LLRF Architecture

FPGA: (Loop latency < 0.1µs)

Field Control DSP: (Fast loop: ~ 10µs, Slow loop: ~ 100 µs) Tuner and piezo control Coldfire:

Talks to the outside world.

Fast ADC board:

6 Channels 16-Bit ADC @ 50 Msps

Fast DAC board:

2 Channels16-Bit DAC @ 12.5 Msps

Medium ADC/DAC board:

Additional 10 to 100 ksps channels for frequency control...

CESR ported to new version last year!

CBETA is a prototype for a bigger ERL, the specifications are chosen keeping in mind the requirements of a light source where bunch compression can be used.

Accelerator-based Sciences

Cornell Laboratory for

and Education (CLASSE)

Field Stability

LRF2017 Level Radio Frequency Workshop

Field controlled by a Proportional Integral feedback loop. •

Q,

5·10⁴

 $5 \cdot 10^{7}$

Cavity

2-cell

TESLA

0.008

TESLA Cavity Phase Stability*

*A. Neumann et al., CW Measurements of the Cornell LLRF System at HoBiCaT, MOPO67, Proceedings of SRF 2011

Recent Developments of the Cornell LLRF System, October 16, 2017

1.10-4

Detuning of the main linac cavities pose a major challenge in field control.

1. Coarse Tuner Control

A simple automatic tuning algorithm was designed based on a set of rules, drawing from experience of manually tuning cavities. Steps:

- 1. Turn on constant forward power into the cavity.
- 2. Determine direction of tuning.
- 3. Tune until a certain field is reached.

- 2. Lorentz Force Detuning Compensation
 - Piezo based feedforward on proportional to field square
 - Allows fast changes in cavity field.
 - Works very well!

Automatic Resonance Control: Microphonics

- 2. Microphonics Compensation
 - Proportional Integral feedback for low frequency vibrations
 - Frequency domain Least Mean Square technique for discrete lines in the frequency spectrum. Very effective for high Q vibration peaks!

Algorithm is stable! Reduced peak detuning from 30.2 Hz to 15.5 Hz.

Summary

- The Cornell Low Level Radio Frequency system is an universal architecture used for controlling a wide variety RF cavities including superconducting and copper cavities.
- The processing is divided among a Xilinx FPGA (loop latency < 0.1 µs) which controls data acquisition and executes field control loops, and an Analog Devices DSP which handles the state machine, trip processing and fast tuner control.
- CBETA puts very strict limits on cavity field stability in situations of high beam loading(~ 40 mA) and also in cavities having high Q_L(~ 6 • 10⁷).
- Tests on 2-cell cavities developed for the Cornell ERL injector and in TESLA cavities at HoBiCaT demonstrate that the system is indeed capable of reaching these requirements.
- Fast tuning for Lorentz force and microphonics compensation along with automatic coarse tuning have been demonstrated and is actively under development for the CBETA project.

People who contributed to this work.

- 1. John Dobbins
- 2. Prof Georg Hoffstaetter
- 3. Roger Kaplan
- 4. Peter Quigley
- 5. Prof Matthias Liepe
- 6. Charles Strohman
- 7. Vadim Vescherevich

Thank you!

References

1. CESR Web pages.

https://www.classe.cornell.edu/Research/CESR/WebHome.html

- 2. G.H. Hoffstaetter et al., CBETA Design Report, Cornell-BNL ERL Test Accelerator, <u>arXiv:1706.04245</u> [physics.acc-ph], 2017
- 3. ERL LLRF Web Page <u>https://www.classe.cornell.edu/~jad/erl_llrf_docs/ERL_LLRF_Controls.html</u>
- 4. Status of the Cornell ERL SRF Cryomodule <u>https://www.classe.cornell.edu/~liepe/webpage/docs/TU303.pdf</u>
- 5. A. Neumann et al., CW Measurements of the Cornell LLRF System at HoBiCaT, <u>MOPO67</u>, Proceedings of SRF 2011
- 6. Z. A. Conway et al., Fast Piezoelectric Actuator Control of Microphonics in the CW Cornell ERL Injector Cryomodule, <u>TU5PFP043</u>, Proceedings of PAC 2009
- 7. N. Banerjee et al., Microphonics Compensation for Low Bandwidth SRF Cavities in the CBETA ERL, O-19, LLRF 2017

LLRF2017 Low Level Radio Frequency Workshop

RF SYSTEM SCHEMATIC

Cornell Laboratory for Accelerator-based Sciences Appendix 3: Main Linac LLRF Layout and Education (CLASSE)

LLRF2017 Low Level Radio Frequency Workshop

LLRF 2017 Low Level Radio Frequency Workshop

Need phase noise << 300 fs for 0.15deg phase stability at 1.3 GHz

ERL injector master oscillator ~300 fs rms jitter

Test system master oscillator~40 fs rms jitter

New MO system based on test system will be designed and fabricated for CBETA.

