Recent Developments of the Cornell LLRF System

Nilanjan Banerjee
Cornell University
Overview

1. Introduction
2. Cornell LLRF Architecture
3. CBETA Requirements
4. Field Stability
5. Automatic Resonance Control
6. Summary
Introduction

Cornell operates two accelerators:

1. Cornell Electron Storage Ring (CESR)
 Storage ring operated as a light source.
 RF System: 500 MHz CW
 Beam Current: 130 mA

2. Cornell BNL ERL Test Accelerator
 4-turn energy recover Linac.
 RF System: 1300 MHz CW
 Injector Current: 40 mA
 Main Linac Current: 320 mA

And copper cavities, including a buncher and a deflector cavity for CBETA!
FPGA: (Loop latency < 0.1µs)
Field Control
DSP: (Fast loop: ~ 10µs, Slow loop: ~ 100 µs)
Tuner and piezo control
Coldfire:
Talks to the outside world.

Fast ADC board:
6 Channels 16-Bit ADC @ 50 Msps

Fast DAC board:
2 Channels 16-Bit DAC @ 12.5 Msps

Medium ADC/DAC board:
Additional 10 to 100 ksps channels for frequency control...

CESR ported to new version last year!
CBETA Requirements

CBETA is a prototype for a bigger ERL, the specifications are chosen keeping in mind the requirements of a light source where bunch compression can be used.

Injector SRF:
- High beam loading (40mA)
 - Small $Q_L \sim 5 \cdot 10^4$ to $4 \cdot 10^5$
 - Large bandwidth $\Delta f \sim$ 2 to 13 kHz
- Field stability requirements:
 - $\sigma_A/A \sim 1 \cdot 10^{-3}$
 - $\sigma_\phi \sim 1$ deg

Main Linac SRF:
- No (almost) beam loading (~0mA)
 - High $Q_L \sim 6 \cdot 10^7$
 - Small bandwidth $\Delta f \sim 25$ Hz
- Field stability requirements:
 - $\sigma_A/A \sim 2 \cdot 10^{-4}$
 - $\sigma_\phi \sim 0.1$ deg

Reference System:
- New RF/LO signals
Field Stability

- Field controlled by a Proportional Integral feedback loop.

Injector Cavity Phase Stability

TESLA Cavity Phase Stability

- Feedforward compensation
 1. Klystron High Voltage
 2. Beam Pulse

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Q_L</th>
<th>σ_A/A</th>
<th>σ_Φ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-cell</td>
<td>$5 \cdot 10^4$</td>
<td>$2 \cdot 10^{-5}$</td>
<td>0.01</td>
</tr>
<tr>
<td>TESLA</td>
<td>$5 \cdot 10^7$</td>
<td>$1 \cdot 10^{-4}$</td>
<td>0.008</td>
</tr>
</tbody>
</table>

A. Neumann et al., CW Measurements of the Cornell LLRF System at HoBiCaT, MOPO67, Proceedings of SRF 2011
Detuning of the main linac cavities pose a major challenge in field control.

1. **Coarse Tuner Control**
 A simple automatic tuning algorithm was designed based on a set of rules, drawing from experience of manually tuning cavities.
 Steps:
 1. Turn on constant forward power into the cavity.
 2. Determine direction of tuning.
 3. Tune until a certain field is reached.

2. **Lorentz Force Detuning Compensation**
 - Piezo based feedforward on proportional to field square
 - Allows fast changes in cavity field.
 - Works very well!

Graphs and Plots

- **Cavity Voltage vs. Time**
- **Tuning Angle vs. Time**
- **Detuning vs. Time**
- **Voltage vs. Time**
2. Microphonics Compensation
 • **Proportional Integral feedback** for low frequency vibrations
 • **Frequency domain Least Mean Square** technique for discrete lines in the frequency spectrum. – Very effective for high Q vibration peaks!

Algorithm is stable! Reduced peak detuning from 30.2 Hz to 15.5 Hz.
Summary

- The Cornell Low Level Radio Frequency system is an universal architecture used for controlling a wide variety RF cavities including superconducting and copper cavities.

- The processing is divided among a Xilinx FPGA (loop latency < 0.1 µs) which controls data acquisition and executes field control loops, and an Analog Devices DSP which handles the state machine, trip processing and fast tuner control.

- CBETA puts very strict limits on cavity field stability in situations of high beam loading (~40 mA) and also in cavities having high $Q_L (~ 6 \cdot 10^7)$.

- Tests on 2-cell cavities developed for the Cornell ERL injector and in TESLA cavities at HoBiCaT demonstrate that the system is indeed capable of reaching these requirements.

- Fast tuning for Lorentz force and microphonics compensation along with automatic coarse tuning have been demonstrated and is actively under development for the CBETA project.
Acknowledgements

People who contributed to this work.

1. John Dobbins
2. Prof Georg Hoffstaetter
3. Roger Kaplan
4. Peter Quigley
5. Prof Matthias Liepe
6. Charles Strohman
7. Vadim Vescherevich

Thank you!
References

1. CESR Web pages.
 https://www.classe.cornell.edu/Research/CESR/WebHome.html

3. ERL LLRF Web Page
 https://www.classe.cornell.edu/~jad/erl_llrf_docs/ERL_LLRF_Controls.html

4. Status of the Cornell ERL SRF Cryomodule
 https://www.classe.cornell.edu/~liepe/webpage/docs/TU303.pdf

5. A. Neumann et al., CW Measurements of the Cornell LLRF System at HoBiCaT, MOPO67, Proceedings of SRF 2011

6. Z. A. Conway et al., Fast Piezoelectric Actuator Control of Microphonics in the CW Cornell ERL Injector Cryomodule, TU5PFP043, Proceedings of PAC 2009

7. N. Banerjee et al., Microphonics Compensation for Low Bandwidth SRF Cavities in the CBETA ERL, O-19, LLRF 2017
Appendix 1: Digital I-Q Detection

1. Field probe 1300 MHz mixer local oscillator 1287.5 MHz down-conversion of cavity field probe signal; complete amplitude and phase information is preserved

IF: 12.5 MHz

2. IF signal is sampled at 4*12.5 MHz rate

3. Consecutive data points describe real and imaginary part of cavity field (I&Q)
Appendix 3: Main Linac LLRF Layout
Appendix 4: RF Reference System

Need phase noise $<< 300$ fs for 0.15 deg phase stability at 1.3 GHz

ERL injector master oscillator
- ~ 300 fs rms jitter

Test system master oscillator
- ~ 40 fs rms jitter

New MO system based on test system will be designed and fabricated for CBETA.
Appendix 5: Field Uncertainty

Injector Cavity Phase Stability

![Graph showing cavity #5 amplitude stability against integral gain and proportional gain with a color scale ranging from 10^{-5} to 10^0.]