

LLRF at CERN Status and New Developments

Presented by W. Hofle

LLRF workshop 2017, Barcelona, 16th October 2017

Overview

Contributions from CERN for

- LHC
- LINAC4, LHC Injector Upgrade Project (LIU)
- AWAKE, FCCee
- ELENA, HIE-Isolde
- Summary and outlook

The accelerator complex

Reduction of required klystron power in LHC

- Full Detuning switched ON June 4th, 2017 with 25 ns spaced bunches
- Above plot the power of all klystrons, plus beam intensity for all fills that made it to physics (injphys, preramp, ..., stable), from June 3rd till now
- All klystron power below 120 kW (except 2B2, @ 140 kW)
- Currently running with > 1800 bunches 8b4e beam, luminosity levelled at 1.5 design value
- 36 fb⁻¹ produced in 2017 (goal is 45 fb⁻¹

Talk by P. Baudrenghien

Electron cloud studies BCMS and 8b+4e

Motivation:

- 8b+4e scheme is fall-back scenario for HL-LHC (in case ecloud effects are too strong)
- Tests performed in the LHC in 2015 confirmed that the 8b+4e scheme can be used to fully suppress the e-cloud formation in the arcs, at the cost of ~30% less bunches
- Used operationally as of fall 2017 as mitigation of the "16L2" issue (beam dumps by vacuum degradation from trapped gas on beam screen, being released by ecloud heat load)

reduced e-cloud heat load

RF longitudinal blow-up in LHC

after (Fill 5151 in 2016) spread in bunch length 120-160 ps, reduced from 410 ps – 450 ps

Blow-up by RF modulation changes bunch shape ("flattening") 6.8.16-4.9.16

bunch lengthening at request of LHCb for reduction of pile-up density

HL-LHC luminosity reach

100 fb⁻¹ reached in first week of October 2017, target is 45 fb⁻¹ in 2017

Beyond LHC: FCCee (~100 km tunnel)

LHC Jura Schematic of an 80 - 100 km long tunnel	Prealps Prealps Aravis		Expe 2 rings separated b 0.6 m Expe	riment IP "Middlev straight" ~1.4 km y RF sectio riment	
	Z	W	Н	ttbar ₁	ttbar ₂
Beam energy [GeV]	45.6	80	120	175	182.5
Beam current [mA]	1390	147	29	6.4	5.4
Number of bunches	16640	2000	393	48	48
Beam RF voltage [MV]	100	440	2000	9500	11000
400 MHz cavities	52 (1-cell)	52 (4-cell)	136 (4-cell)	104 (4-cell)	104 (4-cell)
800 MHz 5-cell cavities				296	376
Runtime [year]	4	1	3	1	3

Poster: A. Butterworth

Challenging RF system for FCCee while FCChh is for RF very similar to LHC

AWAKE: Synchronizing 3 Beams

- Proton bunch driven, plasma wake field acceleration
 Synchronization and RF distribution must deliver wide range
 of RF signals for laser, electron and proton beams
- Reference: signals (f_{ML}, f_{rep}) for laser
- Signals for proton/electron beams and fast triggers shifted

Signal	Frequency	Ratio
Laser phase locked loop, f _{LPLL}	5.9958 GHz	1
Electron acceleration, f _{RF,e}	2.9979 GHz	f _{LPLL} /2
2×Laser mode-locker, 2f _{ML}	176.347 MHz	f _{RF,e} /17
Laser mode-locker, f _{ML}	88.1735 MHz	f _{RF,e} /34
$2 \times SPS RF system freq., 2f_{RF,SPS}$	400.8 MHz	2f _{ML} ×25/11
Common frequency, f _c	8.68 kHz	f _{ML} /10164
Pulse repetition rate, f _{rep}	9.97 Hz	f _c /870

Simultaneous arrival of beams in AWAKE

Simplified overview synchronization and RF distribution

Fiber link stabilization

Simplified diagram

Prototype fully meets requirementsInstalled and commissioned

- → synchronized proton beam extraction to AWAKE
- New logging of temperature and compensation delay for correlation

D. Barrientos, J. Molendijk, *Phase stabilization over a 3 km optical link with sub-picosecond precision for the AWAKE experiment*, submitted to IEEE Real Time Conf., 2016 Poster: D. Barrientos et al.

Phase-compensated optical link

- Precise phase synchronization of proton beam and laser spot for the AWAKE experiment
- Operational since September 2016
- Performance tests show low phase noise and residual phase drift

Synchronization of the AWAKE proton and laser beams, 29.9.2016 Streak camera measurement with the BTV upstream the plasma cell

Test	Phase drift	
Open loop	507.93 ps/°C	
Optical splitter	22.72 ps/°C	
WDM	0.61 ps/°C	

Poster: D. Barrientos

1 GHz Trigger Unit in FPGA

- Emulation of counters and state machine at 1 GHz in FPGA
- Flexible design: New modes of operation
- Applications throughout all CERN LLRF systems

Poster: D. Barrientos

LINAC4 evolution: reliability run

Field Regulation Results

Results measured with a 160 μ s long batch and beam current of 14 mA using the current PI controller. Required stability is 1 degree in phase and 1% in amplitude with a beam current of 40 mA.

CCDTL7 Voltage amplitude and phase. Uncompensated beam loading -1.5% (amplitude), -0.3 deg (phase).

Buncher1 Voltage amplitude and phase Uncompensated beam loading -0.7% (amplitude), +2 deg (phase).

Linac4 Beam Parameters Ion species	H-	
Output energy	160 MeV	
Bunch frequency	352.2 MHz	
Max. rep. rate	2 Hz	
Beam pulse Length	400 microsec	
Mean pulse current	40 mA	
Beam power	5.1 kW	
N. particles per pulse	1.0 ·10 ¹⁴	
N. particles per bunch	1.14 ·10 ⁹	
Beam transverse emittance	0.4 πmm mrad (rms)	

Figure 6 – Linac4 field regulation results

Poster: R. Borner

Paradigm change: from sweeping clock to fixed clock

	Swept Clock	Fixed Clock
STABILITY OF THE FEEDBACK LOOPS	Variable sampling clock → Variable loop delay Compromise in Regulation Bandwidth and Feedback Stability	Fixed sampling clock → Fixed loop delay Optimal Regulation Bandwidth and Feedback Stability
PHASE JUMPS	RF as harmonic of clock → multiplexing required to cover wide RF range Phase Jumps when multiplexing	Simple DDS implementation can cover a wider range without interruption
ADC AND DAC	Complex analogue reconstruction filter Coherent signals fall in swept range Non optimal integrated noise	Fixed analogue reconstruction filters Coherent signals at fixed digital frequencies Optimized integrated noise
UP AND DOWN MIXING	Lower spectral purity of clock → DDS and IQ sensitive to jitter → Problem for heterodyne architectures	Non IQ sampling and Direct down conversion easier
	PLLs tracking and locking Max dF/dt for DCM in FPGAs Non optimal PAR Synchronous digital logic design Clock domain synchronization Complex PAR constraints Serial interfaces FIFOs	PLLs and DCM readily usable Easy place and route Ease clock domain synchronization Ease use of serial interfaces and modern technologies

Three contributions:

- Talks:
- J. Molendijk (ELENA) J. Galindo (SPS LIU)
- Poster: L. Schmid (SPS LIU)

ELENA and PSB LLRF family

- VXS based LLRF system deployed for small synchrotrons at CERN
- 2016: LEIR intensity record with Pb ions
- PSB preparations for new finemet based RF system
- ELENA (anti-protons decelerator) with fixed frequency clocking

Poster: M. E. Angoletta Talk: J. Molendijk (fixed frequency sampling)

hollow bunches in LEIR

ELENA deceleration of anti-protons

Key to LHC performance: LLRF schemes in CERN PS

- Advanced RF manipulations for large variety of LHC type beams
- Different injection harmonics, many harmonics during cycle

- \rightarrow Nominal scheme: 6 PSB bunches \rightarrow 18 \rightarrow 36 \rightarrow 72
- \rightarrow BCMS 25 ns: 8 PSB bunches $\rightarrow 4 \rightarrow 12 \rightarrow 24 \rightarrow 48$
- \rightarrow 2016: SPS delivers 2 x 48 to LHC; 2017 option: 3 x 48 BCMS versus 4 x 72 ?

MHS system for PS LLRF upgrade (VME)

• Multi-harmonic sources exchanged during EYETS 16/17

Poster: H. Damerau

SPS LIU: Evaluating use of μ TCA

µTCA platform

The μ TCA platform fits all requirements for the SPS LLRF upgrade. Since the LHC design, the LLRF systems have been developed on VME/VXS platforms for all CERN accelerators. Within the CERN Beams department, the decision has been taken to move away from VME for new projects. We are now prototyping the μ TCA alternative as joint effort with the CERN Controls group.

Poster: G. Hagmann

Summary and outlook

- LHC VME LLRF systems being rolled out for applications in injectors: LINAC4, PS, SPS
- PSB LLRF family (VXS based) mature, being used in small CERN synchrotrons, ELENA, LEIR, PSB, ... AD
- Paradigm change with developments both for SPS and ELENA with fixed frequency sampling
- μ TCA being tested for SPS 200 MHz LLRF and feedback upgrade as the baseline next generation standard
- Developments for ion post acceleration HIE-Isolde (D. Valuch et al.)
- Crab cavity LLRF developments for SPS (P. Baudrenghien et al.)