LLRF at SSRF

Yubin Zhao

2017.10.16

contents

- SSRF RF operation status
- Proton therapy LLRF
- Third harmonic cavity LLRF
- Three LINAC LLRF
- Hard X FEL LLRF (future project)

Trip statistics of RF system

Storage Ring RF Three CESR type cavities

Booster RF Two five-cell normal cavities

Proton Therapy LLRF (1)

Proton accelerator layout

Status:

- Energy have been arrived 250MeV
- Optimize the parameters of 70MeV, 250MeV and extraction
- The treatment system isn't installed

LLRF remote GUI

8000 point look up table: Frequency ramp Amplitude ramp Phase complement

Proton Therapy LLRF (2)

Parameters:

- 1. Frequency: 1.4~7.5MHz
- 2. Finemet Cavity, Q ~ 0.5
- **3.** SSA:10kW 1.4~7.5MHz
- 4. Include second and third harmonic frequency acceleration
- 5. Accelerate voltage: 2kV

Proton Therapy LLRF (3)

Amplitude and phase response from 1.4MHz to 7.8MHz

	LLRF SYSTE	N		VERS	SION: 1511110
loop control and status	sweep data config		PID co	onfig	
loop_manual Image: Copen loop open loop Image: Copen loop	load data stop_index: 25000 data_port_mask1: 0x0 data_port_mask2: 0x0 port_mask2_num: 0	50 25000 0xF 0xF 0xF 0	Kp_set: 2048 Ki_set: 256 Kd_set: 0 ens_set: 0	2048 256 0 0	begin trig stop trig
	Amp and Pha config		I&Q dat	ta read	
fdb_rot_bypass Image: Control of the status_not_lock Image: Control of the status_not_lock	ref_amp_set: 1.000 1.000 ref_pha_set: 180.0 180.0 et_const_amp: 0.035 0.035 set_const_pha: 63.5 63.5 ret_const_amp: 1.000 1.000 set_const_pha: -90.0 -90.0	PID_I: PID_Q: dac_rot_i: dac_rot_q: fdb_adc_3ls: fdb_adc_3Qc: fdb_rot_3ls: fdb_rot_3ls:	0 -6551 0 -104447 2402 -5100 2437 17920	ref_adc_3ls: ref_adc_3Qc: ref_rot_3ls: ref_rot_3Qc: ref_std_3ls: ref_std_3Qc: ref_mod_3ls: ref_mod_3Qc:	-49 51 0 -65533 65536 0 0 -104447
parameter configure	waveform plot1		way	eform plot	1

Amplitude and phase stability: +/-1%, +/-1 Degree

Local GUI

LLRF for Harmonic cavity (1)

Harmonic cavity in SSRF

In Shanghai Synchrotron Radiation facility (SSRF), A passive third harmonic cavity will be used to increase Touschek lifetime.

To control the voltage of harmonic cavity, a tuned loop control system will be designed for it.

LLRF for Harmonic cavity (2)

Third Harmonic SC control block

- A. The hardware will same as our third generation LLRF
- B. Detect the amplitude of cavity and beam current

LINAC LLRF(1)

Three project: SXFEL DCLS UEDM

SXFEL(Soft-X Free Electron Laser) Installed at 11/2016, Under RF conditioning Including 4 Sets of S-Band (2856MHz), 7 Sets of C-Band (5712MHz), 1 Set of X-Band(11424MHz)

DCLS(Dalian Coherent Light Source), Installed at 07/2016 Including 4 Sets of S-Band

Ultrafast Electron Diffraction and Microscopy at Shanghai Jiaotong University, Installed at 05/2017 Including 1 Set of S-Band 1 Set of C-Band

-By microwave group

LLRF architecture

Two sets of LLRF cards are installed in one MTCA chassis to drive two amplifiers. The LLRF cabinet is one water-cooled, temperature-controlled rack, whose temperature stability is $\pm 0.1^{\circ}$.

LLRF Cabinet

-By microwave group

LINAC LLRF(3)

The results

DCLS Amplitude and phase stability: 0.06%(rms), 0.09°(rms)

Ultrafast Electron Diffraction and Microscopy Amplitude and phase stability: 0.06%(rms), 0.03°(rms)

Soft-X FEL is under testing

Energy: 3.06MeV, Energy stability: 0.05% Energy spread: 0.06%

-By microwave group

Hard X FEL project introduction and LLRF

Hard X FEL parameters

- Beam current: 0.2mA
- Beam energy: 8GeV
- CW mode operation, bunches up to 1MHz
- TTF type cavity

- Begin at end of 2017, finished 2024
- Tunnel construction : 2017-2020
- Utility : 2019-2021
- Key technique and prototype manufactured : 2017-2021
- Main device manufactured :
- Device installed and integrated :
- commissioning :

2018-2023 2021-2023 2022-2024

Approved in 2017.4

Hard X FEL

Injector

SC LINAC

	cryomodule	S-cavities	Beam energy(MeV)
LO	1	8	100
L1	2	16	306
HL	2	16	250
BC1	-	-	250
L2	12	96	1600
BC2	-	-	1600
L3	60	480	8800
total	75+2	600+16	

Beam distribution

Undulator Tunnel

Undulator

FEL-II

FEL-III

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2K cryogenic

12kW@2.0K cryogenic

SC LINAC RF Architecture

Single SSA, Single Cavity SSA:5.2kW@1.3GHz, 2kW@3.9GHz

LLRF boards

ATCA Board

LLRF signal flow

Phase detect between cavity and RF reference

other Digital I/O

Cavity voltage setting to Quench detector

To ADC

► To ADC

To ADC

To ADC

To SSA

Pick-up

cavity

ADC

ADC

converter

Down-

converter

Reverse signal

LLRF signal flow and interface

One cryomodule and RF layout

front view

lateral view

Thanks!