

X-ray scattering of periodic and graded multilayer: comparison of experiments to simulation from surface microroughness characterization

X-Ray Optic Group, INAF OAB

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

.

XMM-Newton

58 mirrors/telescope Ø outer mirror = 70 cm

Electroformed Nickel Au coating

HEW = 15 arcsec Maximum energy = 15 keV

ATHENA

(Advanced Telescope for High ENergy Astrophysics) formerly IXO (X-Ray Obstervatory)

250 modules for each telescope Telescope dimension~1.8×1.0m

40 segments per module

Coated with ...

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

... graded multilayers to reflect hard X-rays

Requirement for Athena : HEW < 10 arcsec (0.1-7 keV) , goal 5 arcsec

HEW : Half Energy Width

10.000 glasses shaped with replication technique !!

We have to control the scattering

because it affects the H

$$HEW(\lambda) = f(H_{figure-errors}) + f(H_{XRS}(\lambda))$$

 $H_{XRS}(\lambda) = f(roughness)$

We measure roughness with AFM and XRS with diffractometer

Where do AFM spatial frequencies do scatter ?

X-ray diffractometer

For E=8.045 keV (1.54 Å)

9 _i	l	9 _s
[arcsec]	[µm]	[arcsec]
3000	10	3211
"	1	4701
"	0.1	11835
"	0.01	36368
2200	10	2480
"	1	4236
"	0.1	11657
"	0.01	36310

$$l = \frac{1}{f} = \frac{\lambda}{\left|\cos\vartheta_{s} - \cos\vartheta_{i}\right|}$$

۲

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

How we compute the XRS from roughness data

X-ray scattering is computed within the first order perturbation theory for multilayers

The roughness evolution of layers other then the substrate and the outer one are computed with the Stearns model

X-ray scattering from a single layer

θ

First order perturbation theory
 Smooth (2σsinϑ_i << λ)
 and isotropic surface

 $1 dI_s$ 16π $Q_{is} \sin^2 \theta_s \sin \theta_i P(f)$ $I_0 d\theta$

$Q_{is} = [r_F(\theta_s) r_F(\theta_i)]^{1/2}$

Q_{is}: polarization factor r_F: Fresnel reflectivity

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

8

θ

θ

X-ray scattering

formula for a multilayer

both periodic and graded

periodic

depth graded

 $\frac{1}{I_0} \frac{dI_s}{d\theta_s} = \frac{16\pi^2}{\lambda^3} Q_{is} \sin^2 \theta_s \sin \theta_i \left[P_{unc}(f) + P_{corr}(f) \right] =$ $=\frac{16\pi^2}{\lambda^3}Q_{is}\sin^2\theta_s\sin\theta_i\left|\sum_{i}T_i^2P_i(f)+2\sum_{i}(-1)^{i+j}C_{ij}(f)T_iT_j\cos(\theta_i)\right|$

electric fields

depth separation

 $\alpha = 2\pi/\lambda(\sin\theta_{\rm s} + \sin\theta_{\rm s})$

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

Roughness growth model (to compute internal PSD

for a single layer

$$\frac{\partial z(x)}{\partial \tau} = -\nu \left| \nabla^n z(x) \right| + \frac{\partial \eta}{\partial \tau}$$

Stearns 1998

SMOOTHING PROCESS

: linked to the growth spatial frequencies positive integer which depends on the smoothing process

INCREASE IN ROUGHNESS

η : random shot noise of the deposition process
τ : layer thickness

$$P^{\text{int}}(f) = \Omega \frac{1 - \exp(-2\nu |2\pi f|^n \tau)}{2\nu |2\pi f|^n}$$
Q volume of the deposited particles

A.

10

Roughness growth model (to compute internal PSD

for a multilayer

$P_{i}(f) = P_{i}^{int}(f) + P_{i}^{ext}(f) = P_{i}^{int}(f) + a_{i}(f)P_{i-1}(f)$

Intrinsic PSD due to the deposition process

Replication on the underlying layer

replication factor $a_i(f) = \exp(-\nu_i | 2\pi f |^n \tau_i)$

to calculate P, and C, in the scattering formula

$$\frac{1}{I_0}\frac{dI_s}{d\theta_s} = \frac{16\pi^2}{\lambda^3}Q_{is}\sin^2\theta_s\sin\theta_i\left[\sum_i T_i(P_i(f) + 2\sum_{i>j}(-1)^{ii}C_{ij}(f)T_iT_j\cos(\alpha\Delta_{ij})\right]$$

EXPERIMENTAL

X-rays diffractometer: BEDE scientific, mod. D1

PPM (Pythonic Program for Multilayer), Mirone ESRF

and SIMULATION

INPUT Nominal power law and densities

OUTPUT Actual layers thicknesses and densities

AFM: Bruker (formely Veeco) mod. EXPLORER standalone

Measure substrate and outer layer

X-rays

diffractometer:

BEDE scientific,

mod. D1

INPUT Stack parameters from XRR/PPM P_i , C_{ij} from AFM/Stearns model OUTPUT XRS diagram

Samples

Sample 1 Substrate : silicon <u>Periodic</u> multilayer: N=40 bi-layers, W/Si, d=4.6Å, Г=0.42, deposited by e-beam evaporation

Sample 2 Substrate : silicon <u>Graded</u> multilayer: N=100 bi-layers, Pt/C, deposited by magnetron sputtering

program upgrading validation

Sample 1: PERIODIC, W/Si

Incident energy = 8.045 keV (Cu Ka₁ line) Incidence angle = first Bragg peak

Application to graded multilayers

Sample 2, Pt/C

> XRR measurements

Incident energy = 8.045 keV (Cu K α_1 line)

AFM measurements

Stack parameters optimization

θ_i =3000 arcsec

Fit B : optimized stack parameters

	HENELYSTER CONTRACTOR (CONTRACTOR)	
	Pt: a [Å], b, c	C: a [Å], b, c
Fit A	31.08, -0.90, 0.30	53.16, -0.96, 0.19
Fit B	31.00, -0.94, 0.23	53.00, -0.88, 0.21

Layer thickness difference ≤ 3 Å for all layers except first C layer where $\Delta = 15.3$ Å

XRS measurements 1

Grazing incident angle [arcsec]

10000

5000

IWXM 2012, B. Salmaso, D. Spiga, R. Canestrari and L. Raimondi

1.E-06

Ô

Defects contributing to XRS

XRS measurements 1 θ_i =3000 arcsec

Different incidence angles

XRS measurements 3

θ_i =2200 arcsec $\theta_{\rm i}$ =3000 arcsec $\theta_{\rm i}$ =3000 arcsec 10 **XRS** experimental XRS fit 1.005+0 1.006-0 experiments Counts 1.006-02 1.006-0 1.005-04 10 1.006-01 1.005-06 5000 Grazing incidence angle [arcsec] 2.0×10³ 1.2×104 4.0×10³ 6.0×10³ 8.0×10³ 1.0×10⁴ 1.4×10⁴ 0 θ_i =2200 arcsec Scattering angle (arcsec) 10 **XRS** experimental 10 XRS fit Counts 10 6.0×10³ 2.0×10³ 4.0×10³ 8.0×10³ 1.0×104 1.2×104 0 1.4×10⁴ Scattering angle (arcsec)

Conclusions

We have a protocol to predict XRS, and therefore imaging quality, from surface roughness for both periodic and graded multilayers

The roughening model is validated by the fit of the XRS data

XRS diagram is even more sensitive than XRR to the actual thickness trend in the stack

We can separate surface defects by interfacial defects that contribute to XRS of the multilayer

further development

Correction for internal refraction with variable Γ Automatic search for best stack parameters

