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Absolute metrology of optical surfaces 

� We  want to characterize the departure  of optical  surfaces 
to ideal geometry (flat, sphere, ellipse)  with accuracy << 1nm

� No one is able to produce such a surface 

� Manufacturing problems 

� Stability on the long term (thermal, supporting)

� Measurement are always made with respect to a Reference

� Reference can be  

� A particular surface : interferometry

� A calibration result : (LTP)

� Invariance properties can be used to generate an estimate of the reference

� Flat surface, sphere and cylinder

� Self referencing can be generalized to any shape (with help of computers)

� Using the self-consistency of a measurement set 

� Akin to stitching problem
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Modeling the reference problem

� Interferometric measurements

� Measures the wavefront difference between the 
surface under test (SUT) and a reference (Ref)

� Extra unknowns : tilts (T) & mean distance (d)

� M = S - R + (T + d)

� Other instrumental issues:

� Linearity and uniformity of the phase shifts
� Distorsion of the imaging system

� Slope measurements (LTP)

� Measures directly the local slope to a linear 
constant k

� k must  be experimentally determined 

� unknown : the linearity correction (and Tilt)

� M = k S – L(M) + T

� Origin of the correction:

� Variation of the optical path with local slopes
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How redundancy may help

� Object and Reference functions are unique

� Any measurement is  a point to point linear combination 
of the object and reference

� By taking measurements at different position 
the point to point relationship is broken
and shared with a larger set of points

� The data from such sets of points should be consistent with
the uniqueness of the Object and Reference
+ unique distances and tilts for each frame

� This allows for determining extra experimental parameters, tilts, 
distances 
and recovering the two functions

� The problem is solved globally avoiding propagations of errors 
which distort the reconstruction 

� Consistency is never perfect,  noise, incomplete description of the 
acquisition

� Solution need to be found in a maximum likelihood sense 

A A1A-1

A’ A’ 1A’ -1 A’ 2 A’ 3A’ -3 A’ -2A’ -4



IWXM 4, July 2012
Analogy with ptychography

� Ptychography is a technique of CDI (computed 

diffraction imaging) where a light probe of llimited area is 
scanned on a sample, and far field diffraction recorded

� Each subfield is reconstructed with CDI reconstruction 
algorithm

� Constraints coming from the overlapping area and the 
constant probe function are use to refine iteratively the 
unknown phases

� As an outcome, both object and probe functions  
are reconstructed

� Difference with reference problem

Ptychography is non-linear (multiplicative).
Reference problem is linear (additive),
so in principle simpler

Thibault et al., Science, 321 (5887): 379-382
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Application to LTP 

� The LTP calbration curve:  slope = f(spot position)
is not a straight line

� Non linearity deviation ± 2 µrad typ. on the full 8 mrad stroke

� Many evidences from Round Robins and periodic controls of ref . artifacts  

� Causes

� The slight position change of the return pencil beam  and 

� Imperfect optical elements : lens, prisms, mirrors

� Presence of local defects  (in thick glass elements)

� Stability

� Calibration curves are stable on short term (measurement of 1 piece)

� Variable on long term with configurations

� Redundant measurement allow altogether

� To characterize the deviation from linearity

� Recover the surface profile

� Extend the angular range of measurement by stitching
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Method

� Record a dense set of slope profiles

� tilting the SUT incrementally between 2 profiles 

� In order to cover most of the rectangle defined by 
the length of the SUT and the LTP slope range 

� Establish the equations relating 
the measured slope values   M(x,p)
to the unknowns

S(x) real SUT Slope profile

C(m)  linearity Correction of the LTP

T(p)  tilt angle of the optics table

M(x,p) = S(x) – C(M(x,p)) + T(p)

� Discretize the equations  for computer solving

� Measurements can be taken on a discrete set of 
position points xi

� C(m) needs to to be interpolated between the 
slope points mj of a discretization  grid

If the tilt rotation axis is not on the SUT the 
x positions should be corrected and interpolated
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Interpolation

� Interpolation should be local to preserve  a “point” to “point” relationship

� Eg. polynomial approximation on a small number of neighboring points

�

� Then, assuming that the rotation axis is on the surface 1

the variables can be written in vector form as 

and the set of equations as 

� This set of equations is overdefined 
iI can be only solved in a maximum likelihood sense

1. If not, a local interpolation should be also applied in x to care for irregular sampling positions
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ESRF and SOLEIL results on a spherical mirror

M43 mirror (R≈43.3m) was measured 
independently with ESRF and SOLEIL 
LTPs (2009)

Because of the short radius a stitching 
procedure is used.

When global redundancy based stitching 
is applied a close agreement is found 
(red and blue curves)

Discrepancies are found when 
conventional end to end stitching is 
used 
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Stability of linearity correction function

� The linearity correction should be a 

constant of the optical system

� Small variations may come from 

different X positions of the SUT on 

the LTP bench, since the return 

optical path is slightly different.

� A reasonable day to day consistency 

is observed
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Round Robin example
Zeiss calibration sphere

� HZB, ESRF, Elettra measurements of the Zeiss sphere

� Redundant stitching procedure applied to SOLEIL data

� It should be noted that the NOM autocollimator (HZB) from Elcomat receives a precise 
linearity compensation

ZEISS Calibration Sphere Si:145mm (L)x45mm(W)x40mm (t)

-4

-3

-2

-1

0

1

2

3

4

0 20 40 60 80 100 120

mm

sh
ap

e 
er

ro
r 

n
m

HZB
ESRF
SOLEIL

HZB:   0.79 nm rms - PV = 4.34 nm
ESRF: 1.18 nm rms - PV= 4.83 nm
SOLEIL: 0.71 nm rms - PV= 3.68 nm



IWXM 4, July 2012
Application to stitching interferometry

Method

Record several 16 x 12 mm frames

tiled with 2 – 3 mm steps (Dx)

The measured heights are related to the unknowns

S(x,y)  real height map of the SUT

R(x,y) real height map of the Reference

T(n)  spurious displacement vector of the translation  table     
at each step (Z and tilt angles)

by

M(x+n Dx, y)=S(x, y) – R(x, y) + (T0(n) + T1(n) x + T2(n) y)

No special discretization step needed if the step Dx is an 

integer number of pixels
otherwise a  local polynomial interpolation might be applied

Generate and solve the corresponding system of equations 

EOTECH  NanoPro 
micro-interferometer
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Solving the equation system

� The matrix Q is a huge but very sparse matrix

� eg recording a 150 mm X 12  strip in 3 mm (144 px) steps requires 
recording 44 frames, amounting to 20 M data points =number of equations

� The reconstructed image  is  6970 x 580 = 4 M points

� The reference  is 780 x 580 = 0.3 M points, + 130 tilt-displacements

� But Q has only 5 non null element per row 

� The equation matrix is solved iteratively under Matlab 

� It requires ~ 10-15 minutes on the computer cluster of SOLEIL

� Convergence requires some caution
Namely, starting from reasonable estimates of the reference and tilts

� Reference is estimated by averaging all the frames together 
and is subtracted from the measurements.  
The computed Ref is actually a correction.

� This way of estimating the reference implies that 
reference  and SUT are reconstructed to a unknown uniform curvature 
(namely the average SUT radius)
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Profiles from stitching interferometry and LTP
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Conclusion

� The principle of using a set of redundant measurements to recover 
both, the measured object, and a reference or correction function, 
has been proved effective.

� It can be applied to stitching measurement problems

� on slope (LTP)

� on surface heights (interferometry)

� Work is still needed to

� improve the convergence 

� condition the equation matrices (a key point not yet studied)

� refine the frame spacing to avoid periodic artifacts


