

Ion beam etching of a flat silicon mirror surface: a study of the shape error evolution

<u>Iulian Preda¹⁻²</u>, Amparo Vivo², Franck Demarcq², Sebastien Berujon²⁻³, Jean Susini², Eric Ziegler²

¹ ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Spain
² European Synchrotron Radiation Facility, 38043 Grenoble cedex, France
³ Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, United Kingdom

OUTLINE *** PROJECT CONTEXT * ION BEAM SOURCE CHARACTERISTICS * MIRROR SURFACE METROLOGY * SHAPE ERROR MINIMIZATION and ROUGHNESS SURVEY * SUMMARY AND PERSPECTIVES**

- *** PROJECT CONTEXT**
- *** ION BEAM SOURCE CHARACTERISTICS**
- * MIRROR SURFACE METROLOGY
- * SHAPE ERROR MINIMIZATION and ROUGHNESS SURVEY
- *** SUMMARY AND PERSPECTIVES**

General goal:

Configuration of an on-line mirror surfacing station

Iulian Preda – 4th IWMX – Barcelona, July 2012

This presentation:

Determination of a suitable ion beam process

First objective: mirror surface flattening.

Ref. L. Assoufid, A. Rommeveaux, H. Ohashi, K. Yamauchi, H. Mimura, J. Qian, O. Hignette, T. Ishikawa, C. Morawe, A.T. Macrander, A. Khounsary, S. Goto, Proceedings SPIE 5921, 59210J-1-12 (2005)

*** PROJECT CONTEXT**

*** ION BEAM SOURCE CHARACTERISTICS**

- * MIRROR SURFACE METROLOGY
- * SHAPE ERROR MINIMIZATION and ROUGHNESS SURVEY

*** SUMMARY AND PERSPECTIVES**

Manufacturing a flat or cylindrical surface mirror would require a linear ion beam parallel to the generatrix.

Custom-designed ion beam which it works on the principle of an Anode Layer Source.

Ion beam intensity profile as a function of gas feed, pressure and the applied voltage.

Ion beam intensity profile: f^n (V, P_{gas} , F_{gas})

Ion beam intensity profile: f^n (V, P_{gas} , F_{gas})

Profile depth of an exposed surface is strongly related to the ion beam intensity profile.

Phase shifting Fizeau micro-interferometer (Zygo VeriFIRE AT+ 150mm aperture).

Measurements performed by Amparo Vivo at Optical Metrology Laboratory at ESRF.

Profile depth of an exposed surface is strongly related to the ion beam intensity profile.

Iulian Preda – 4th IWMX – Barcelona, July 2012

Roughness measurements of a silicon mirror surface exposed (stationary condition) to the ion beam through an aperture.

Title: 4

Phase shifting micro-interferometer (modified Veeco NT9300)

Iulian Preda – 4th IWMX – Barcelona, July 2012

Surface chemical analysis of eroded silicon surface

Surface chemical analysis of eroded silicon surface

Fluorescence spectroscopy measurements performed by Irina Snigireva, ESRF EXPD Chemistry & Micromanipulation Laboratory

Surface chemical analysis of eroded silicon surface

Process concept for obtaining a high quality flat / shaped surface:

- ion beam with a fully described erosion rate
- ion beam conditions favoring a high erosion rate while preserving surface roughness
- surface local exposure time proportional to the excess of amount of material (it suppose that the surface profile is known)
- ion beam size reduced progressively by reducing the apertures width, aperture made in low density material masks

- *** PROJECT CONTEXT**
- ***** ION BEAM SOURCE CHARACTERISTICS
- * MIRROR SURFACE METROLOGY
- * SHAPE ERROR MINIMIZATION and ROUGHNESS SURVEY
- *** SUMMARY AND PERSPECTIVES**

Surface shape and roughness measurements performed at the ESRF Optical Metrology Laboratory using:

- *Phase shifting Fizeau micro-interferometer* (Zygo VeriFIRE AT+ 150mm aperture)
 - Repeatability on 2 successive measurements: 0.2 nm rms
 - Rms deviation over 10 successive measurements: 0.03 nm
- *Phase shifting micro-interferometer* (modified Veeco NT9300)
 - Spatial frequency: mm⁻¹- µm⁻¹
 - Repeatability: 5 pm rms
 - Noise level: 19 pm
- Long Trace Profiler
 - Repeatability: by averaging > 5 successive scans
 - Noise level: 0.08 µrad over 6 h

Erosion rate description

- *** PROJECT CONTEXT**
- ***** ION BEAM SOURCE CHARACTERISTICS
- * MIRROR SURFACE METROLOGY
- * SHAPE ERROR MINIMIZATION and ROUGHNESS SURVEY
- *** SUMMARY AND PERSPECTIVES**

Surface shape evolution of the 1st sample

Roughness survey

Before etching processes: $R_q = 0.44$ nm

Central area on the mirror surface

After etching processes: $R_q = 0.42$ nm

Title: 3

Central area on the mirror surface

On a **second** sample

optical zoom	point	rough	ness (Å)
		initial	final
50 X	1	2,5	3,3
	2	2,6	31
	3	2,4	2,5
	4	2,4	2,5
	5	2,4	2,6

On a second sample

Title: 2 Iulian Preda – 4th IWMX – Barcelona, July 2012

Title: 2

Iulian Preda – 4th IWMX – Barcelona, July 2012

X Profile

50

60

70

۹M

30

80

Rq	0.01 um
Ra	0.01 um
Rt	0.07 um
Rp	0.07 um
Rv	-0.00 um

0.01 um

0.00 um

0.08 um

0.08 um

-0.00 um

13.56 urad

0.00 um

0.29 um2

0.21 m

None

Angle	8.37 urad
Curve	-0.19 m
Terms	None
Avg Ht	0.00 um
Area	0.22 um2

Title: 2

X

Y

Ht

Dist

Angle

Iulian Preda – 4th IWMX – Barcelona, July 2012

-

-

9.58

30.73

68.17

0.0300-

0.0200-

0.0100-

0.000-

ò

20

10

30

40

- um

- um

- nm

- um

- •

Shape error evolution of the 2nd sample

Iulian Preda – 4th IWMX – Barcelona, July 2012

Iulian Preda – 4th IWMX – Barcelona, July 2012

Iulian Preda – 4th IWMX – Barcelona, July 2012

Shape error evolution of the 2nd sample

Iulian Preda – 4th IWMX – Barcelona, July 2012

Shape error evolution of the 2nd sample

CONCLUSION & PERSPECTIVES

- ion beam source found.
- verified concept.

- optimized etching process (three more points to be improved in the very near future).

- Final OMLS station to be installed at BM05

Financial support from:

Spanish Ministry of Science and Innovation (grant SEIC-2010-00084)

GRAVIT Innovation, Technology Transfer Operator (SISMiX grant)

Acknowledgements:

Irina Snigireva for surface chemical analysis

Acknowledgements:

Paul De Schynkel – RF Operation System & Support Unit