

Characterization of the error budget of the Alba-NOM

Josep Nicolas, Juan Carlos Martínez ALBA light source

Outline

We aim to characterize the uncertainty of slope measurements obtained by the Alba-NOM, contributed by stochastic effects and systematic errors:

1. The bench

- a. Motion metrology
- b. Raytracing of the guidance induced error
- c. Vibrations, noise and stability

2. The optics

- a. Calibration using redundant-independent datasets.
- b. Optimization of the iris aperture.

3. One application

- a. surface correction using few point forces
- b. Exsitu vs Insitu

Motion performance

The use of a differential interferometer allows an accurate characterization of the motion performance of the bench

ALBA synchrotron light source

The use of a differential interferometer allows an accurate characterization of the motion performance of the bench

	Backlash	Accuracy	Repeatability	Resolution
Position	100 nm	3.5 um	77 nm	20 nm

		Backlash	Accuracy	Repeatability
pitch	Z∱	2 nrad	7.1 urad	200 nrad
yaw	×∱	390 nrad	10.1 urad	94 nrad
roll	\longrightarrow	<115 nrad	6.1 urad	<200 nrad
flatness	Z ∱	14 nm	1.1 um	42 nm
straightness	X∱→	2 nm	2.1 um	47 nm

Raytracing

Double pass raytracing of the scanning pentaprism is used to determine the influence of guidance error on the measurement

Guidance accuracy

150

100

Contribution of the guidance error to the LTP error

www.cells.es

Guidance accuracy

Pentaprism error – R=100 m

Guidance accuracy

Vibrations on top of the NOM

Although the amplitude of the vibration in the ground is **50 nm RMS**, the measurement on top of the NOM is **13 nrad RMS**

Redundant-independent datasets

The use of redundant-independent measurements of a mirror allows to estimate the slope error and the linearity error of the instrument

The resolution of the surface is limited

- Validity of the error model \rightarrow short mirrors vs long mirrors
- Noise of each measurement
- Number of measurements

F. Polack, et al , Nucl. Instrum. Meth. Phys. Res. A 616 (2010) 207

Simulation: accuracy dependence on number of datasets

Redundant-independent datasets

ALBA synchrotron light source

A 100 mm, R=75 m sphere has been used to cover 12 mrad range of the NOM.

Each reconstruction is based on 54 scans

Residual aberration + periodic subpixel interpolation error found for two different roll positions of the pentaprism.

Accuracy vs spatial resolution

Measurements of the same mirror, using different iris apertures, all compared with a reference measurement at 3 mm iris

- For small apertures uncertainty is limited by noise and repeatability
- For larger apertures, the error increases, mainly, due to the loss of lateral resolution

Slope error optimization

For whatever correction technique, accuracy of metrology is a limit to the achievable slope error

Simulation of the achievable slope error with 2 actuators, as a function of the measurement error.

Mirror figure measured by the pencil beam method matches the profile optimized to 55 nrad at the Alba-NOM 2 years ago.

Conclusions

Positioning error correction (LUT) and accurate pentaprism allow reducing the bench induced error to the few nanoradian

The usage of redundant-independent datasets allow an accurate modeling of the optics induced error.

Using them, also allows reducing the iris aperture, to increase spatial resolution preserving accuracy.

The measurements provided by the NOM are accurate enough to optimize the mirror figure to nanometer accuracy

Acknowledgements

Computing and Controls	Zbigniew Reszela		
	Sergi blanch		
	Guifré Cuní		
	Tiago Coutinho		
	Sergi Pusó		
Algorithms	Juan Campos (UAB)		
Engineering	Claude Ruget (CRC)		
	Carles Colldelram		
	Ricardo Valcárcel		
	Jordi Iglesias		
Technicians	José Ferrer		
	David Calderón		
	Pablo Jiménez		
Administration	Laura Campos		
XALOC beamline	Jordi Juanhuix		

Thank you for your attention

www.cells.es

ht source