Thermal bump removal by designing an optimised crystal shape

J.-S. Micha 1, O. Geaymond 2, O. Ulrich 3, X. Biquard 3, F. Rieutord 3

French CRG-IF BM32 at ESRF

1 UMR SPrAM, CNRS/CEA-Grenoble/Univ. J. Fourier
2 Institut Néel, CNRS-Grenoble
3 CEA-Grenoble/INAC
Outline

- Motivations
- Modelling
- Results
- Conclusions
Motivations

- **Bending Magnet at ESRF**
 - heat power: 300W
 - acceptance: horiz. >1.5 mrad, vert. 0.1 mrad
- **New Double Crystal Monochromator**
 - Si(111)
 - from 5 to 30 keV
- **keep cheap and simple cooling design**
 - water (avoid LN2)
 - indirect cooling (simple + less vibrations)
Modelling: FEA - Heat

- **Heat source:**
 - 2D domain incoming power
 - \(\sim 100-150 \text{ W on 40x50 mm} \)
 - \(\sim 50-130 \text{ mW/mm}^2 \) (on mono)

- **Spatial distribution** (uniform, gaussian-like)
- **current in storage ring**
- **crystal inclination** (working energy)
- **Slits aperture** (hxv), illuminated area

- **Cooling power:**
 - convective transfer: water/Cu
 - \(h = 5000 \text{ W/mm}^2/\text{K} \)
 - heat resistance Si/InGa/Cu

- **XOP**
 - \(E=6.04 \text{ GeV} \)
 - \(R=25 \text{ m} \)
 - \(B=0.8 \text{ T} \)
 - \(H \text{ accept}=2.09 \text{ mrad} \)
 - (mono. 26.9m Slits 23.9m)

- **Cooling power**
 - convective transfer: water/Cu
 - \(h = 5000 \text{ W/mm}^2/\text{K} \)
 - heat resistance Si/InGa/Cu

- 0.1 \text{ W/mm}^2
Modelling: FEA – deformation

Get at (reflective) domain surface:
uz vertical displacement along z => derivative of uz along y (// x-ray beam)
=> \(\mu \) longitudinal slope errors

FEA with COMSOL multiphysics
(ex FEMLAB)

Standard block Si crystal

\(E = 18 \text{keV} \)
\(\Delta \omega = 16 \mu \text{rad} \)
\(I = 200 \text{mA} \)

\(\Delta z_{\text{max}} = 0.4 \mu \text{m} \)
\(\mu_{\text{max}} = 15 \mu \text{rad} \)

\(R_{\text{int}} = 50\% \)
Less than to 25% with \(I = 350 \text{mA} \)
Modelling: design of an optimised shape

- Previous works: side cooling better than bottom cooling
- General idea: decrease u_z gradient by decreasing T gradient...

Reflective area

Water cooling

- First simulations: possibility to reverse the bump curvature!
- For a given heat load: possibility to remove longitudinal u_z gradient (smooth profile)
- Add deformation sources

Constraints to the design:
- several optics configurations
- limited crystal size

Strain and temperature gradient are outside the reflective domain
Reflectivity Model - surface bump

Simple Model: \(\mu : \) Slope error at \((x,y)\) on 1\(^{st}\) crystal / flat 2\(^{nd}\) crystal
\(\Delta \omega : \) Darwin width

Bragg reflectivity \(\sim \) gate function \(\Delta \omega \) or \(\Delta E \) width

Integrated reflectivity:
\[
R_{\text{int}} = \int_{\text{area}} R(x,y) \, dx \, dy
\]

- Objective function to optimise
- two inputs:
 - local slope error \(\mu(x,y) \) from FEA
 - Darwin width \(\Delta \omega \) (working energy)
Reflectivity Model - thermal lattice expansion

Two origins of lattice planes strain at illuminated surface:
- slope errors (longitudinal z-displacement gradient)
- thermal lattice spacing expansion

\[\Delta \theta_B = \alpha_{\text{expansion}} \cdot \tan \theta_B \cdot \Delta T = \mu_{\text{th}} \]

- If \(T_1(x,y) \) uniform \(\Rightarrow \) perfect tuning with tilted 2nd Xtal by \(\Delta \theta_B \) with \(\Delta T = T_2 - T_1 \)
- If \(T_1(x,y) \) non uniform \(\Rightarrow \) best tuning with tilted 2nd Xtal by \(\Delta \theta_B \) with \(\Delta T = T_2 - \text{mean}(T_1) \)
equivalent slope error \(\sim \mu = \alpha_{\text{expansion}} \cdot \tan \theta_B \cdot \Delta T_{\text{Max}} / 2 \)

For our heat load range, d-spacing variation can be omitted

\[\mu_{\text{th}} = (T_2 - T_1(x,y)) \cdot \alpha_{\text{Si}} \cdot \tan \theta_B \]

Gate function Xtal 1 with \(\mu + \mu_{\text{th}} \)
Gate function Xtal 2 with \(2\mu + \text{offset} \)

@20 keV, \(\alpha_{\text{Si}} = 2.66 \times 10^{-6} \text{ K}^{-1} \)
\(\Delta T = 1^\circ \text{C} \Leftrightarrow \Delta \theta_B = 1/4 \mu\text{rad} \)
\(\Delta T = 60^\circ \text{C} \Leftrightarrow \Delta \theta_B = 60^\circ \text{C} \)

A more accurate computation can be done:

\[\mu (\mu\text{rad}) \]

y // beam

\(\Rightarrow \) offset for highest \(R_{\text{int}} \)
Results

Optimised shape for 3 Energies x 3 horiz. acceptance

\[E = 18\text{keV} \]
\[\Delta \omega = 16 \mu\text{rad} \]
\[I = 200\text{mA} \]

\[\Delta z_{\text{max}} = 0.4 \mu\text{m} \]

Gradient is along x!

\[\mu = -2 \text{ to } 11 \mu\text{rad} \]
\[\mu_{\text{mean}} = 2 \mu\text{rad} \]

\[\text{Rint} = 90\% \]
Results: comparison old-new crystal

Old Xtal

- 8 keV 40x5 mm
 - $\Delta \omega = 40 \, \mu\text{rad}$
 - Total power: 129.25 W
 - In rectangle $h = 45.02 \, \text{mm}$ and $v = 22.64 \, \text{mm}$ on monochromator
 - Mean power density: 0.127 W/mm2 (mono), 0.5 W/mm2 (HxV)

- 18 keV 50x3 mm
 - $\Delta \omega = 16 \, \mu\text{rad}$
 - Total power: 122.8 W
 - In rectangle $h = 56.28 \, \text{mm}$ and $v = 30.36 \, \text{mm}$ on monochromator
 - Mean power density: 0.072 W/mm2, 0.1 W/mm2 (HxV)

- 27 keV 50x3 mm
 - $\Delta \omega = 10 \, \mu\text{rad}$
 - Total power: 98.24 W
 - In rectangle $h = 45.02 \, \text{mm}$ and $v = 45.55 \, \text{mm}$ on monochromator
 - Mean power density: 0.048 W/mm2 or 0.66 W/mm2 (hXV)

New Xtal

- 8 keV 40x5 mm
 - $\Delta \omega = 40 \, \mu\text{rad}$
 - Total power: 129.25 W
 - In rectangle $h = 45.02 \, \text{mm}$ and $v = 22.64 \, \text{mm}$ on monochromator
 - Mean power density: 0.127 W/mm2 (mono), 0.5 W/mm2 (HxV)

- 18 keV 50x3 mm
 - $\Delta \omega = 16 \, \mu\text{rad}$
 - Total power: 122.8 W
 - In rectangle $h = 56.28 \, \text{mm}$ and $v = 30.36 \, \text{mm}$ on monochromator
 - Mean power density: 0.072 W/mm2, 0.1 W/mm2 (HxV)

- 27 keV 50x3 mm
 - $\Delta \omega = 10 \, \mu\text{rad}$
 - Total power: 98.24 W
 - In rectangle $h = 45.02 \, \text{mm}$ and $v = 45.55 \, \text{mm}$ on monochromator
 - Mean power density: 0.048 W/mm2 or 0.66 W/mm2 (hXV)
Results: comparison Exp. - FEA

Old Xtal

8 keV 40x5 mm
\[\Delta \omega = 40 \mu \text{rad} \]
\[R_{\text{int}} = 70\% \]
\[0.5 \times 10^{11} \text{ ph/s/200mA} \]

18 keV 50x3 mm
\[\Delta \omega = 16 \mu \text{rad} \]
\[R_{\text{int}} = 56\% \]
\[4.32 \]

27 keV 50x3 mm
\[\Delta \omega = 10 \mu \text{rad} \]
\[R_{\text{int}} = 56\% \]
\[5.36 \]

New Xtal

8 keV 40x5 mm
\[\Delta \omega = 40 \mu \text{rad} \]
\[R_{\text{int}} = 85\% \]
\[0.7 \]

18 keV 50x3 mm
\[\Delta \omega = 16 \mu \text{rad} \]
\[R_{\text{int}} = 90\% \]
\[8.0 \]

27 keV 50x3 mm
\[\Delta \omega = 10 \mu \text{rad} \]
\[R_{\text{int}} = 92\% \]
\[8.74 \]
Conclusions

• Optimised crystals mounted on BM32 and BM02 at ESRF
• Photons flux at sample is very close to the theoretical flux
• FEA predicts high R_{int} even for higher storage ring current

Advantages

• Longitudinal bump removed
• Self-tuning crystal
• For one optics configuration => it should exist an optimised shape
• Cheap (indirect cooling + water)
• Simple to design & simple iterative converging methodology
• Standard manufacturing and tailoring
• Easy to mount & not sensitive to mounting defaults

Drawbacks (?)

• Increase of temperature (but whole setup might be cooled down anyway)
• Weak sagittal bump (but could be compensated)
Outlook

- Automatic iterative method, use ray-tracing method
- Install on other BM beamline @ ESRF, SOLEIL (DIFFABS,…), etc…
- Apply on Ge/Si (Smart Cut)
- Apply on other reflective surfaces:
 - monochromator with higher power load (wiggler, ondulator)
 - mirror
 - other spectral range (laser)
Thank you for your attention