130 years of NSLS operation R&D 100 Awards iigh-resolution soft x-ray monochromator cryo scanning transmission x-ray microscope nigh-resolution scanning photoelectron x-ray 991 SUNY Stony Brook, BNL, LBNL, and 999 SUNY Stony Brook University& Bell vavefront dividing infrared interferometer 986 NIST and University of Tennessee: 988 BNL and the University of Chicago: narmonic closed-orbit feedback system stem Sagittal Focusing Laue Monochromator 1997 BNL& Quantar Technology, Inc .: <u>ຈ</u> soft x-ray emission spectrometer. in x-ray microprobe/microscope. 988 AT&T Bell Laboratories: 2011 BNL&CSIRO(Australia) 1989 BNL NSLS: real-time: Maia x-ray microprobe del ⁻luorescence Omnilyzer. 1990 BNL NSLS: 2006 BNL NSLS: -aboratories: nicroscope. BM:

> continuous innovation: novel SR-based experimental techniques, pushing the boundary of the SR source, x-ray optics

Novel approaches in the SR beamline design

progress in x-ray optics and detectors

A tremendous progress was made for all type of x-ray optics: reflective (mirrors), refractive (CRL, Kinoforms), and diffractive (ZP) optics breaks 100 (10) nm barrier while retaining high efficiency
2D x-ray detectors with direct x-ray photon readout become common. Continuous shift to CMOS technology will produce detector with an efficiency of single x-ray photon counting, almost no background and high dynamic range

new x-ray sources-> new scientific frontiers

4 6 2

10 keV

spectroscopy-> microscopy

(~30nm), problem with large sag (mirror size) remains

ion beam assisted reactive erosion- at the SR facility?

transmission grating based spectrometer

ultra-high resolution soft x-ray spectrometer

> 10⁵ resolving power can be reached with "conventional design', assuming: grating slope error~0.1urad+ very dense CCD

poly-dispersive RIXS

see also V. Strocov, hv² design poly-dispersed RIXS >> yes, even more, we can use pre-mirror to focus the light in non-dispersive direction and use prime mono poly-disperse light schematic optical scheme Slit (energy VLS- PGM or infinity corrected PGM M₁ window) vertical r₁~8.5m r₂~15m r₁~35m M₁ **r**₁~1.5m **SVLSG** source r_{3h}~50m M_3 horizontal ~4eV or 400spectra (v) along 10eV (2K) @10meV Spectrometer@930eV 296 Excitation 0.10 30meV 20meV 294 Excitation Energy (eV) Prime mono: 292 **Resolution 10meV** Linear dispersion ~2mev/um 290 xcitation or 5um apart \geq Further magnified (by x6) 10meV OmeV 288 0.00 spectrometer . H 286 Rayleigh EF 284 line -0.05 α-Emission **π-Em**. -20 -15 -10 -5 282 286 290 274 270 278 x (10⁻³mm) EF Emission Energy (eV)

>> permit us to collect ~500 individual spectra at once and further improve the vertical collection angle to 10mrad

e⁻ beam chicane: to take the best of "shearing"

Shearing the straight between two "similar beamlines not only increases total productivity, but permits novel acquisition modes: measuring extended polarization map at once, or using chicane modification (e-beam or photon beam steering) as a function of time to study dynamic while collecting dichroic signal *motivation: bridge the gap between low resolution/ sensitivity "industrial imaging" and modern x-ray microscopy*

Resolution: ~**λ/NA detector, diffraction limited ~5nm** Instant FofV: **~probe spot size**/2 Scan Size: **arbitrary** k*m/2*l*n/2 pixels

soft x-ray shearing interferometry

> Absolute accuracy (repeatability) of **low frequency wavefront reconstruction exceeds** λ/100, so great sensitivity make shearing interferometry attractive for x-ray phase imaging.

NSLS-II beamline dedicated to at-wavelength metrology

- Typical mirror/ pupil size ~280/6.5mm (soft x-ray) and 250/0.8mm (hard x-ray).
- Coherence length is $15\mu m$ (h)/190 μm (v) (for E~6keV) and can be further increased by closing the slit.
- Combination of x-ray lens (CRL or ZP) with entrance slit provides light monochromaticity of 10⁻².
- Flux will reach 10⁸ph/s/mm² (hard x-ray).

> simple and versatile, as (i) virtual source distance can be matched to the requirements of the optics under test (ii) coherence vs. flux can be efficiently traded

concluding remarks

Novel approaches in the SR design:

- close to diffraction limited performance of novel SR sources gives a possibility to transform "full flux" experiments to "x-ray microscopy" without penalty. Optics (and detectors) might still be a limited factor, but the progress is steady.
- an idea of "parallel acquisition" gives a fresh look to beamline design principles
- there is a rapid progress in wave-field analysis: source properties and direct propagation, as well as inverse problem solution (ptychography, x-ray interferometry, phase imaging)
- for many components, the final performance can only be verified by at-wavelength metrology. It bears ultimate accuracy and sensitivity. ?It can be used in combination with *in situ* (fine) figuring, but "combined" resources are needed to put it into the practice.

Acknowledgement:

your attention

funding: DOE Contract No. DE-AC02-98CH10886 colleagues:

- optical design (Oleg Chubar (SRW), Tony Warwick and Vladimir Strokov)
- microscopy (David Shapiro and Tolek Tyliszczak)
- x-ray interferometry (Ken Goldberg and Mourad Idir)
- x-ray metrology and optics development (Mourad Idir and Ray Conley)