Hartmann Wavefront Measurements at the EUV-FEL FLASH.

B. Keitel, S. Kreis, M. Kuhlmann, E. Plönjes, K. Tiedtke

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

B. Flöter, K. Mann, T. Mey, B. Schäfer

Laser-Laboratorium Göttingen e.V, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany

marion.kuhlmann@desy.de

Intention.

> 1. Beamline commissioning

 First implementation and long-term observations of diagnostic tools and optics, e.g. alignment of focussing mirrors and effects of filters and gas attenuator on the FEL wave front.

> 2. FEL characteristics

- The FEL source can be analysed in position, shape and size. The beam position and its stability can be documented.
- > 3. Diagnostic for user experiments
 - Focus size and position can be determined online for single shots, if the main experiment is transparent for the FEL beam.

Experimental setups at FLASH.

Compact Hartmann sensor (first version).

Wave front sensor (6 – 30nm)

Hartmann plate:

-7μm tantalum foil with circular laserdrilled holes in a squared grid (pitch 320μm, diameter 65μm)
-20μm Ni foil with electroformed holes in a squared grid (pitch 250μm, diameter 75μm)

CCD (LM165 12bit):

field of view: 8.25mm x 6.6mm 1280 x 1024 pixel, 6.45 μ m pixel size, chip with phosphorescent coating (Gd₂O₂S:Tb, grain size 1-2 μ m, central emission wavelength 545nm)

Plate – CCD Chip: 97.08mm Plate – Flange: 100mm

Repeatability (wave front rms): - $\lambda_{13.5nm}$ /90 for tantalum foil

Software by LLG (MrBeam 3.5.0)

Collaboration with Laser-Laboratorium Göttingen e.V. (LLG) B. Flöter et al., New J. of Phys. 12 (2010), 083015

Compact Hartmann sensor (second version).

Wave front sensor (6 – 30nm)

Hartmann plate:

20µm Ni foil electroformed holes in a squared grid (pitch 250µm, diameter 75µm)

CCD (MR285MC 14 bit):

field of view: 8.98mm x 6.71mm (HxV) 1392 x 1040 pixel, 6.45 μ m x 6.45 μ m pixel size, chip with phosphorescent coating (Gd₂O₂S:Tb, grain size 1-2 μ m, central emission wavelength 545nm)

Peltier cooling possible

Plate – CCD Chip: 198.251mm Plate – Flange: 131mm

x/y and tip/tilt stages: motorized

New design: higher machanical stability

Repeatability (wave front rms): $-\lambda_{13.5nm}/116$ for Ni foil

Software by LLG (MrBeam 3.5.2)

Collaboration with Laser-Laboratorium Göttingen e.V. (LLG)

Setup at BL3.

Settings.

- Single bunch
- > 13.3nm
- > 0.01mbar Xe in attenuator -> attenuation to about 2µJ per pulse
- both 10mm apertures in tunnel
- > no transmission filters used, but checked that
 - 200nm Si filter (Luxél) shows nearly no effect on the wave front
 - 137nm AI (Uni Frankfurt) influences the wave front due to bad filter quality
- CCD camera triggered by fast shutter

w_{PV}=106.9nm, wms=18.3nm

w_{PV}=31.9nm, w_{PV}=58.9nm, w_{ms}=8.6nm w_{ms}=4.5nm

w_{PV}=69.1nm, wms=11.7nm

0. -40000

wev=159.7nm

Referenz: 31x24

w_{PV}=259.6nm w_{PV}=271.9nm

w_{PV}=138.3nm w_{PV}=177.6nm w_{PV}=214.4nm

0. -20000

AOI: automatic, expand margin 0, circle, threshold 1, Zernike AF37, modal

0. -10000

w_{PV}=250.9nm

0.10000

0,20000

w_{PV}=287.6nm

0,30000

w_{PV}=324.4nm

start

0,0

w_{PV}=449.4nm

Simulated beam profiles.

Numerical propagation via Kirchhoff-Fresnel integral

marion.kuhlmann@desy.de | Page 10

BL2 mirror alignment November 2010.

- > Sensor (Hartmann plate) 1096mm behind expected focal position
- > M0 with Ni coating
- > 0.12 mbar Xe in attenuator, no transmission filters
- > λ =13.4nm, single bunch with ~50µJ

Rotation: 15000steps ~ 214.3µrad,

> Average of 20 frames measured (integrated on chip)

Before adjustment

Yaw: -60µrad

 w_{PV} =32nm w_{rms} =3.9nm ~ $\lambda/3$

Astigmatism Y²-X²: -15.760nm Astigmatism XY : -2.868nm

After adjustment

Rotation: 3000steps ~ 42.8µrad, Yaw: -90µrad

 w_{PV} =6nm w_{rms} =1.5nm ~ $\lambda/9$

Astigmatism Y²-X²: 0.658nm Astigmatism XY: 0.265nm marion.kuhlmann@desy.de | Page 17

- The compact Hartmann sensor proved to be a valuable diagnostic tool during at FLASH.
- Online diagnostic (wave front, aberration, focus position,...) for single pulses is possible.
- A high sensitivity and resolution of the Hartmann sensor is required for the high beam quality of the FEL.

Perspectives.

Quantitative determinationof the Wigner distribution function.

to the FLASH team!

The work was partially supported by IRUVX-PP, the preparatory phase of the EuroFEL consortium under grant agreement no. 211285. Support of the FLASH user facility, in particular the funding of wavefront sensors through

the BMBF programme FSP301-FLASH is greatfully acknowledged.

