

イロト イポト イヨト イヨト

= 900

SLS Metrology Laboratory LTP upgrade Example measurements

The upgraded LTP-V @ SLS

Uwe Flechsig

Paul Scherrer Institut, Villigen, Switzerland

IWXM Barcelona, July 2012

2 LTP upgrade

Uwe Flechsig LTP-V @ SLS

イロト イポト イヨト イヨト

-20

SLS Beamline Optics Group

- Uwe Flechsig, physicist (1998)
- Peter Oberta, physicist (2009-2011)
- Sibylle Spielmann, engineer (2007)
- Andreas Jaggi, technician (2005)
- Juraj Krempaský, controls expert (2010)
- Vincent Thominet, engineer (2011)

A B > A B >

The metrology lab at SLS

Mission:

- quality assurance measurements of X-ray optics
- figure (slope error) $\Delta s = 0.1 \,\mu rad$
- roughness $\Delta h = 0.1 \text{ nm}$
- grating parameters (profile measurements with AFM)
- scratches, digs etc., mechanical dimensions, radii, (grating efficiency)
- environment:
 - clean room class 10000 / 1000 (inside LTP shelter)
 - temperature stability < 0.1 K/ day, for comparison expansion coefficients of concrete and steel: $\alpha \approx 15 \,\mu {\rm mK}^{-1} {\rm m}^{-1}$
 - *low* mechanical vibrations and electromagnetic noise, (Gordon criteria: VC-D ... VC-E $\equiv 3 \mu m/s/terz$)

Fizeau Interferometer Zygo Verifire ATZ

grazing incidence setup

installed DEC 2011

Features

- aperture: 100 mm
- camera: (1000 × 1000)*pixels*, frame rate: 43 Hz
- PV wavefront error < λ/36
- RMS wavefront repeatability 0.35 nm or $< \lambda/1800$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Interference microscope Zygo NewView 5010

microscope

installed 2001, DEC 2011 upgraded (motorized stage for stitching, new computer, software upgrade)

reproducibility

ヘロア 人間 アメヨア 人口 ア

CVD diamond window, thickness: 100 μm

Interference microscope Zygo NewView 5010

microscope

installed 2001, DEC 2011 upgraded (motorized stage for stitching, new computer, software upgrade)

reproducibility

ヘロア 人間 アメヨア 人口 ア

3

CVD diamond window, thickness: 100 μm

Long Trace Profiler LTP V from Ocean Optics

- optics up to a length of 1.5 m
- shelter with temperature and vibration monitoring
- installed 2005
- delivered with EPICS interface (though never working)

ヘロト 人間 とくほとう ほとう

-2

OO LTP V simplified optical principle

Uwe Flechsig LTP-V @ SLS

LTP upgrade

motivation: improve accuracy, reliability and (labour) efficiency

- 2009 evaluation of software options (Ocean Optics, LabView, EPICS)
- Nov 2009, LTP optics upgrade, mirrors $\lambda/5?? \implies \lambda/100$
- Nov 2009, upgrade of LTP controls system to EPICS, 1st step keeping original 1d- CCD detector from OO
- Jan 2010, 1st usage of new software for KB bender calibration details: U. Flechsig, T. Huthwelker, S. Spielmann and J. Krempasky, "LTP-V with EPICS controls system for efficient quality assessment of KB-bender systems", NIMA, 635 (2011) S64, k to doi>
- Feb 2011, new CCD camera with areaDetector, 1st measurements, KB bender calibration, line density measurement of VLS grating
- Dec 2011, additional encoder head for real time position monitoring

Controls Options for OO LTP V @ SLS

Uwe Flechsig

LTP-V @ SLS

New detector for LTP-V (Jan 2011)

areaDetector: Software for 2-D Detectors in EPICS

Mark L. Rivers*

*Center for Advanced Badiation Sources and Department of Geophysical Sciences, University of Chicago, Arronno

Abstract, anotheractor is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly Keywards: Detactory, Software; EPICS, Synchrotron; X-rays; Imaging

Many synchrotron beamlines use 2-D detectors, including visible light CCD camerus for imaging, CCD detectors Many synchronou beammes wa 2-D-detection, including visible light CCD cameras for imaging, CCD detection for optical spectroscopy, and x-ray detection using colline image plans, CCDs, pixel array detection and amorphous silicon file panel detection: In most cases these detections need to be controlled from the beamline control system. Many beachines around the world use the <u>TPEVS</u> control system, which is a collaborative open-source control system tookin. The peaks of the <u>arrandomment</u> module are to: — Minimize the amount of code that needs to be written to implement a new detector.

- Provide a standard interface defining the functions and parameters that a detector driver should support
- Allow any extensibility to take advantage of detector-specific features beyond the mandaed parameters.
 Have hist-performance. Applications can be written to set the detector image data through EPICS, but an

ARCHITECTURE

The architecture of the anaDetector module is shown in Fig. 1. From the bottom to the top this architecture which of the following six layers: This is the layer that allows user written code to communicate with the hardware. It is usually provided by the

7 This is the driver that is written for the anaDetector application to control a maticular detector. It is written in This is the driver that is written for the assessments application to control a pathcase sensors, in written to C++ and inherits from the ADDriver class. It uses the standard any interfaces for control and states information. Each time it receives a new data array it can pose it as an NDATRy object to all Layor 3 clients that have

regenerate her cathocks. This is the only code that needs to be written to impositor a new detector. 3. Code manning at this level is called a "plug-in". This code registers with a driver (or another plugin-whenever there is a new data array. The circling plugins implement file saving (NDPluginFile), region-of-interest

OVER 2014" Increasing Contracts on Endormal Industry International
B. Caratt, J. Castle, K. Napati, and S. Wilkins
O 2010 American Environ of Person Vicin TVI 1011 AD 400 Distant

- PROSILICA 16 Megapixel CCD camera, 12 bit
- Gigabit Ethernet (GigE Vision)
- 4872 x 3248 pixel , pixel size 7.4 μm
- 36.1 mm x 24 mm sensor size
- 3.35 fps at full resolution, higher frame rates for ROI's

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A driver for areaDetector software is available, and tested!

Uwe Flechsig LTP-V @ SLS

イロト イポト イヨト イヨト

3

LTP Plugin for areaDetector

Uwe Flechsig LTP-V @ SLS

イロン 不得 とくほ とくほう 一座

data acquisition with sscan

recording of a 3-dimensional data set

LTP plugin for areaDetector in operation

"real time" data processing

ROI0: CCD readout: 1800 x 560 pixel out of 4872 x 3248 (12 bit)

Uwe Flechsig

LTP-V @ SLS

Overview of the new LTP controls scheme

Additional Encoder for real time position monitoring

Uwe Flechsig LTP-V @ SLS

ヘロト 人間 とくほとくほとう

∃ 990

X07MB calibration of KB mirror system

some specs:

< 🗆 🕨 < 🗇

- vendor: XRADIA
- demagnification:
 39 m : 0.5 m
- Iength: 20 cm
- type: bender with 2 actuators

KB bender calibration for X07MB

focusing distance

residual slope error at optimum

CSD (rms contribution)

slope results

VLS Grating, Line Density Measurement

Uwe Flechsig

<ロ> (四) (四) (三) (三) (三)

Littrow configuration- principle

LTP-V @ SLS

measurement setup

VLS Grating, Measurement Results

slope results

line density contributions

My message

With a moderate upgrade the LTP can stay competitive instrument, advantages are the high spatial resolution ($\approx 1 \text{ mm}$) and high angular range of $> \pm 5 \text{ mrad}$

My message

The SLS approach to control the LTP: EPICS controls system, concentration on the few LTP specific parts and standard tools for all the rest.

Uwe Flechsig LTP-V @ SLS

ヘロト ヘアト ヘビト ヘ

.≣⇒

Acknowledgments

- metrology labs @ Elettra, BESSY and ESRF (metrology support at the beginning of SLS)
- Peter Takacs, BNL (support to get Ocean Optics code)
- Valeriy Yashchuck, ALS (Labview library)
- Mark Rivers, APS, Univ. of Chicago and EPICS community (areaDetector and other tools)

< □ > < 同 > < 三 > <

크 > 크

Thank you for your attention.

Uwe Flechsig LTP-V @ SLS

イロン イロン イヨン イヨン

3