

Characterization of out-of-vacuum undulators and wiggler using a Hall probe system. Some remarks.

J. Marcos, V. Massana and J.Campmany

IMMW17 September 18-23, 20011

Outline

- Introduction
 - Measured Insertion Devices
 - Magnetic Measurements system
 - Alignment procedure
- Obtained results
 - MPW80
 - EU71
 - EU62
 - Field Integrals agreement
- Conclusions

Introduction

out-of-vacuum IDs @ ALBA

IMMW17

Measured IDs

APPLE-II devices *ppm* technology NdFeB permanent magnets

Manufacturer: Sincrotrone Trieste

Multipole Wiggler hybrid technology NdFeB permanent magnets Vanadium permendur poles Manufacturer: Advanced Design Consulting (ADC)

EU62

 $\lambda_0 = 62.36$ mm 57 poles (~1.8m) gap_{min}=15.5mm B_v^{max} (H-mode)=0.86T

 $B_x^{\max}(V-mode)=0.61T$

 $B_{x,v}(\text{C-mode})=0.5\text{T}$

EU71

 $\lambda_0 = 71.36$ mm $47 \text{ poles } (\sim 1.7\text{m})$ $gap_{min} = 15.5$ mm $B_y^{max}(\text{H-mode}) = 0.93\text{T}$ $B_x^{max}(\text{V-mode}) = 0.7\text{T}$ $B_{x,v}(\text{C-mode}) = 0.57\text{T}$

MPW80 $\lambda_0 = 80.00$ mm 27 poles (~1m) $gap_{min} = 12.5$ mm $B_y^{max} = 1.74$ T

Introduction

ALBA-CELLS magnetic measurements lab

IMMW17

B

Hall probe bench (local field determination) **3-axes Hall probe**

x-axis Scanning volume

 $(\Delta x \times \Delta y \times \Delta z) = 500 \times 250 \times 3000 \text{ mm}^3$

Characteristics of on-the-fly measurement mode: $v_{z} = 16 \text{ mm/sec}$ Maximum velocity $\delta z = 20 \ \mu m$ Minimum step size Min. "dead time" between acquisitions $\delta \tau = 6$ msec Max. number points/scan 30000 Field Absolute accuracy ~ 0.5 Gauss Field Integrals accuracy not better than 10⁻⁵T·m=10 G·cm

J. Campmany, J. Marcos, V. Massana, and Z. Martí, "Construction & Commissioning of a 3D Hall probe bench for Insertion Devices measurements at ALBA Synchrotron Light Source", IMMW15, Fermilab, August 2007

Flipping coil bench (field integrals determination) Field Integrals Absolute accuracy (IDs) $\sim 10^{-6}$ T·m=1 G·cm

Introduction

3-axes Hall probe

F.W. Bell Hall sensors

Model GH-700

Gallium Arsenide

Nominal current: $I_{nom} = 5 \text{ mA}$ Magnetic Sensitivity ~ 1 V/Tesla Max. linearity error (±1 Tesla): ±2% Temperature coefficient: -0.07%/°C

18-23.09.2011

Introduction out-of-vacuum IDs @ ALBA

Relative position between Hall sensors

Refinement of the relative positioning between the sensitive areas of the three sensors using Maxwell equations

Introduction out-of-vacuum IDs @ ALBA

Previous usage of Hall probe bench

a) Complete characterization of all (32) Bending Magnets of ALBA Storage Ring

b) Analysis of Booster Bending Magnets (fringe field properties, excitation curves...)
B_y field map @670A

J. Campmany, J. Marcos, D. Einfeld, M. Pont and V. Massana, "Characterization of magnets for the ALBA booster synchrotron", **IMMW16**, Bad Zurzach, October 2009

J. Campmany, J. Marcos, D. Einfeld, M. Pont and V. Massana, "Characterization of ALBA Storage ring bending magnets using a high precision Hall probe bench", **IMMW16**, Bad Zurzach, October 2009

IMMW17 Introduction out-of-vacuum IDs @ ALBA

Bending Magnets vs Insertion Devices

Only $B_y \neq 0$ and $B_x \sim B_z \sim 0$ Magnetic fields up to 1.7 Tesla Magnetic field gradients up to 25 Tesla/m Large field integrals: up to 2 Tesla·m

 $B_x ≠ 0; B_y ≠ 0; B_z ≠ 0$ simultaneously Magnetic fields up to 1.7 Tesla Magnetic field gradients up to 100 Tesla/m Very small field integrals: ~10⁻⁴ Tesla·m

18-23.09.2011

18-23.09.2011

Outline

- Introduction
 - Measured Insertion Devices
 - Magnetic Measurements system
 - Alignment procedure
- Obtained results
 - MPW80
 - EU71
 - EU62
 - Field Integrals agreement
- Conclusions

(a) MPW80: magnetic mid-plane

1st step: determination of pole positions by means of longitudinal scan of B_y along nominal (mechanical) axis

18-23.09.2011

IMMW17

LBA

(a) MPW80: magnetic mid-plane

 2^{nd} step: vertical scan (±1mm) of B_y at the position of the poles and determination of maximum/minimum by means of parabolic fit

IMMW17

LBA

(b) MPW80: analysis of minor components

Minor components measured along magnetic mid-plane

18-23.09.2011

IMMW17

(b) MPW80: analysis of minor components

Dependence with vertical position (y) of minor components

18-23.09.2011

IMMW17

(b) MPW80: analysis of minor components

Characteristics of B_z : components in quadrature and in phase

IMMW17

- 8 4

(b) MPW80: analysis of minor components

Characteristics of B_z : component in quadrature

$$B_{z}(z, y) - B_{z}^{\text{phase}}(z) = B_{z}(z, y) - B_{z}(z, y_{0}) = B_{z}^{\text{quad}}(z, y) \approx y \frac{\partial B_{y}}{\partial z}$$

IMMW17

LBA

(b) MPW80: analysis of minor components

Characteristics of B_z : component in phase

Which is the origin of the component in phase?

•Misalignment of Hall probe?

IMMW17

•Upper and Lower magnetic arrays not properly aligned along z?

(b) MPW80: analysis of minor components

Characteristics of B_z : component in phase Upper and Lower magnetic arrays not properly aligned along z? \rightarrow Determination of pole positions away from mid-plane

18-23.09.2011

IMMW17

BA

(b) MPW80: analysis of minor components

RADIA model with Δz displacement between upper and lower jaws

(c) MPW80: magnetic axis determination

1st step: field map within magnetic mid-plane

18-23.09.2011

IMMW17

LBA

(c) MPW80: magnetic axis determination 2nd step: determination of *z*-positions where $B_y(z,x)$ is max/min for *x*=ctant

(c) MPW80: magnetic axis determination

3rd step: determination of the max/min of the magnetic field along the pole profile $z_i(x)$

IMMW17

BA

(c) MPW80: magnetic axis determination

4th step: repeat the process for different working configurations

MPW80 magnetic axis				
gap [mm]	taper [µm]	axis horizontal position $x_m(z_c)$ [mm]	axis yaw angle [µrad]	
12.9	-275	$(+124.900\pm0.100)$	$(+95\pm400)$	
12.9	0	$(+124.620\pm0.100)$	$(+260\pm500)$	
12.9	+275	$(+124.650\pm0.100)$	$(+28 \pm 400)$	
18.9	0	$(+124.290\pm0.300)$	$(+820 \pm 1000)$	
18.9	+275	$(+124.310\pm0.300)$	$(+900 \pm 1000)$	
Are	rage	$(+124.550 \pm 0.090)$	(+420±300) 🕒	

IMMW17

LBA

(d) MPW80: magnetic center

	MPW80 center						
Mechanical center [mm]		Magnetic center [mm]			Difference [µm]		
x _c	(124.867 ± 0.100)	$\frac{x_{\rm o}}{(x_{\rm m})_{14}}$	(average all poles) (central pole)	(124.550±0.900) (123.820±0.600)	Δx	(−320±900) (−1050±600)	
yc	(-20.149 ± 0.100)	Ут Уо	(<i>B_y max/min)</i> (<i>B_z null)</i>	(-20.535±0.050) (- 20.410±0.050)	Δу	(-390 ± 100) (-260 ± 100)	
Z _c	(735.492 ± 0.100)	$\frac{z_0}{(z_m)_{14}}$	(average all poles) (central pole)	(738.750±0.250) (738.680±0.040)	Δz	(+3300±250) (+3200±100)	

Outline

- Introduction
 - Measured Insertion Devices
 - Magnetic Measurements system
 - Alignment procedure
- Obtained results
 - MPW80
 - EU71
 - EU62
 - Field Integrals agreement
- Conclusions

IMMW17

BA

(a) EU71: magnetic mid-plane

1st step: determination of pole positions by means of longitudinal scan of B_y along nominal (mechanical) axis

Results out-

(a) EU71: magnetic mid-plane

 2^{nd} step: vertical scan (±1mm) of B_y at the position of the poles and determination of maximum/minimum by means of parabolic fit

IMMW17

LBA

18-23.09.2011

IMMW17

LBA

(b) EU71: analysis of minor components

Minor components along magnetic mid-plane phase=0 at x=y=0

(c) EU71: magnetic axis determination

1st step: field map within magnetic mid-plane

detail central period

(c) EU71: magnetic axis determination

1st step: field map within magnetic mid-plane

detail central period

(c) EU71: magnetic axis determination

1st step: field map within magnetic mid-plane

detail central period

0.12

x [m]

0.13

0.14

0.11

18-23.09.2011

0.12

x [m]

0.13

0.14

0.11

 $(+590\pm90)$

 $(+290\pm6)$

 $(+267\pm 6)$

 $(+320\pm50)$

(c) EU71: magnetic axis determination

4th step: repeat the process for different working configurations

 $(+124.734 \pm 0.040)$

 $(+124.138 \pm 0.005)$

 $(+124.133 \pm 0.005)$

 $(+124.339 \pm 0.040)$

 $-B_v$ component

 $-B_r$ component

phase $180^{\circ} - B_x$ component

Average

phase C

phase C

18-23.09.2011

(d) EU71: magnetic center

	EU71 center					
Mechanical center [mm]		Magnetic center [mm]	Difference [µm]			
xc	(124.136 ± 0.100)	$(x_{\rm mH})_{24}$ (central pole phase 0)(124.486±0.050) $(x_{\rm mV})_{24}$ (central pole phase 180°)(124.159±0.050)	$\Delta x \stackrel{(+350\pm100)}{(+25\pm100)}$			
yc	(-83.660 ± 0.100)	$y_{\rm m}$ (B_y max/min)(-84.024\pm0.010) $y_{\rm o}$ (B_z null)(-83.769\pm0.050)	$\Delta y \bigoplus_{(-110\pm 100)}^{(-360\pm 100)}$			
ze	(785.605 ± 0.100)	$(z_{\rm mH})_{24}$ (central pole phase 0)(786.009 \pm 0.030) $(z_{\rm mV})_{24}$ (central pole phase 180°)(786.220 \pm 0.030)	$\Delta z \bigoplus_{(+600\pm100)}^{(+400\pm100)}$			

Outline

- Introduction
 - Measured Insertion Devices
 - Magnetic Measurements system
 - Alignment procedure
- Obtained results
 - MPW80
 - EU71
 - EU62
 - Field Integrals agreement
- Conclusions

LBA

18-23.09.2011

Results

(c) EU62: magnetic axis determination

	EU62 magnetic axis	
configuration	axis horizontal position $x_m(z_c)$ [mm]	axis yaw angle [µrad]
phase 0 $-B_y$ component	$(+124.239\pm0.015)$	$(+94 \pm 30)$
phase C $-B_y$ component	$(+124.330\pm0.070)$	$(+35 \pm 100)$
phase C $-B_x$ component	$(+124.128\pm0.003)$	(-75 ± 6)
phase 180°- B_x component	$(+124.126\pm0.003)$	(-74 ± 5)
Average	$(+124.200\pm0.040)$	(-7±30) 🙂

(d) EU62: magnetic center

	EU62 center					
Mechanical center [mm]		Magnetic center [mm]	Difference [µm]			
x _c	(124.050 ± 0.100)	$(x_{\rm mH})_{29}$ (central pole phase 0)(124.180±0.050) $(x_{\rm mV})_{29}$ (central pole phase 180°)(124.120±0.050)	$\Delta x \odot ^{(+130\pm 100)}_{(+70\pm 100)}$			
yc	(-86.277 ± 0.100)	$y_{\rm m}$ ($B_y \max/\min$)(-86.240±0.060) $y_{\rm o}$ ($B_z \operatorname{null}$)(-86.000±0.050)	$\Delta y \odot ^{(+40\pm 100)}_{(+280\pm 100)}$			
ze	(914.131 ± 0.100)	$(z_{\rm mH})_{29}$ (central pole phase 0)(914.530\pm0.030) $(z_{\rm mV})_{29}$ (central pole phase 180°)(914.710\pm0.030)	$\Delta z \textcircled{(+400\pm100)}_{(+580\pm100)}$			

Outline

- Introduction
 - Measured Insertion Devices
 - Magnetic Measurements system
 - Alignment procedure
- Obtained results
 - MPW80
 - EU71
 - EU62

- Field Integrals agreement

Conclusions

Field integrals agreement

IMMW17 Results

out-of-vacuum IDs @ ALBA

We introduce in Hall probe measurements a correction term proportional to $(B_z)^2$ in order to reproduce FC Field Integral measurements

Conclusions

- Magnetically determined magnetic center of IDs in agreement with mechanical data provided by manufacturers typically within ≤0.5mm
- Tilt angle of magnetic mid-plane always <150µrad
- Yaw angle of magnetic axis <500µrad. Some ambiguity depending on the method used to determine it.
- Magnetic measurements have revealed some minor manufacturing imperfections (yaw misalignment of magnetic poles, misalignment along longitudinal direction of upper and lower magnetic arrays...).
- Systematic discrepancy of ~200-300µm between the vertical location of the plane where B_y is max/min and the plane where $B_z=0 \rightarrow$ relative positions between Hall sensors to be revisited?
- A term proportional to $(B_Z)^2$ has been introduced into B_x and B_y Hall probe data in order to match Flipping Coil Field Integral measurements.

Thanks for your attention

