Measurements of small aperture quadrupoles for the Linac4 and CLIC projects

P. Arpaia², M. Buzio¹, D. Cote¹, P. Galbraith¹, <u>J. García-Perez</u>¹, D. Gilloteaux¹, G. Golluccio², F. Mateo¹, C. Petrone², L. Walckiers¹

¹ CERN TE-MSC ² University of Sannio, IT

> International Magnetic Measurement Workshop XVII Barcelona – Spain September 18–23, 2011

IMMW17 18-23 Sept 2011 Barcelona Spain J. Garcia CERN-TE-MSC
1

Overview

LINAC4 bench update
Geometrical-Axis measurements
Harmonic measurements
Linac4 magnets measurements
CLIC magnets measurements
Conclusions

Angle measurement uncertainty ±60 µrad all systematic Effects removed by flipping the magnet around the Y axis

 Stability of the angle ±100 µrad in three months

 Magnetic axis measurement uncertainty ±10 µm all systematic

•Effects removed by flipping the magnet around the Z and Y axis

 \bullet Stability of the axis measurement ±10 μm in three months

20

15

10

5

0

-5

C3

C4

C5

C6

C7

C8

C9

C10

Permanent magnet harmonic measurements in 4 different positions

>- The absolute coil has low sensitivity to b8,a8 (new coil under construction >-No systematic errors between the CERN measurement and the manufacturer

>- Random differences with the manufacturer 0.04% RMS over 40 magnets measured

>Pulsed Quadrupole >measurement step by step >in 4 different positions

>-1 ms current cycle up to **200A** \rightarrow -current rise time 300 μ s >-The compensate coil is not sensitive to the b₄ a₄

Axis Measurements

Permanent Magnet Quadrupole (CCDTL Linac4) prototype measurements

Main Characteristics:

- Aperture : 45 mm
- Integrated gradient (Max):1.6 Tesla
- Integrated gradient (Min):1.3 Tesla
- Inner diameter (Min):0.040 m
- Outer diameter (Max):0.200 m
- Length :0.100 m
- Gradient integral error (rms):± 0.5 %
- Magnetic versus geometric axis: < 0.1 mm
- Harmonic content at 15 mm radius: Bn/B2 for n=3,4,...<0.05
- Yaw/pitch/roll:1 mrad

Geometrical pole measurement with Single Strechted Wire + Optocoupleur

•Axis finding: Minimizing the amplitude vibration at resonant frequency and biggest AC current (105 mA) the sensitivity we have is better than 0.1 μm

Problem : result in Local reference system. Precision lost when translating to magnets fiducials (~0.05 mm)

Approach 1 : Geometrical pole profile measurement with stretched wire touching the surface (sensitivity with optocoupleurs 0.1 μm)

Approach 2 : gauge equipped with optocoupleurs mounted in the magnet ends to measure the position of the wire

Harmonics results for Permanet Magnet Quadrupole

Harmonics	b3	b4	b5	b6	b7	b8	b9	b10	a3	a4	a5	a6	a7	a8	a9	a10
X	-48.7	-0.3	-1.1	-2.2	1.5	-1.5	-2.1	-0.5	11.3	-0.6	-6.1	-0.4	-0.5	1.8	-0.1	-1.3
Y	33.4	-11.7	2.1	-0.7	1.0	-0.7	0.0	-0.4	10.9	-0.2	-6.3	0.7	-3.3	0.9	-1.4	0.2
Average	-7.7	-6.0	0.5	-1.5	1.2	-1.1	-1.1	-0.4	11.1	-0.4	-6.2	0.1	-1.9	1.4	-0.7	-0.5
Ref	-5.2	6.1	-0.3	-2.2	0.1	0.0	-0.1	-0.6	8.5	0.5	-1.3	0.8	0.0	0.0	0.1	0.1
Cn X	50.0	0.7	6.2	2.3	1.5	2.3	2.1	1.3								
Cn Y	35.1	11.7	6.6	1.0	3.5	1.2	1.4	0.4								

📕 Ref 📕 Average

•9

Harmonics	b3	b4	b5	b6	b7	b8	b9	b10	a3	a4	a5	a6	a7	a8	a9	a10
х	84.3	-47.5	32.6	32.7	3.7	-3.5	6.6	-8.9	45.7	-63.3	61.5	-22.1	1.4	9.0	-4.2	2.9
Y	92.5	-44.3	24.4	34.1	3.7	-4.6	7.6	-9.5	41.1	-67.6	63.3	-19.7	1.8	8.0	-3.0	0.9
Average	88.4	-45.9	28.5	33.4	3.7	-4.0	7.1	-9.2	43.4	-65.4	62.4	-20.9	1.6	8.5	-3.6	1.9
Ref	129.7	-46.8	27.9	32.0	-0.3	-4.1	8.0	-9.1	49.3	-65.9	63.4	-18.7	1.3	2.6	-5.5	1.1

IMMW17 18-23 Sept 2011 Barcelona Spain J. Garcia CERN-TE-MSC
•10

ELYTT 80mm Linac 4 measurements

Harmonics	b3	b4	b5	b6	b7	b 8	b 9	b10	a3	a4	a5	a6	a7	a8	a9	a10
Х	8,5	-7,4	-9,8	16,3	6,5	-1,5	0,7	-0,2	2,3	-50,7	-7,6	-12,0	-5,2	-2,3	0,5	0,7
Y	9,8	5,5	-7,6	17,8	7,2	-0,7	0,3	1,0	-1,1	-48,3	-9,2	-10,7	-4,3	-2,2	1,1	0,1
Average	9,2	-1,0	-8,7	17,1	6,8	-1,1	0,5	0,4	0,6	-49,5	-8,4	-11,4	-4,8	-2,2	0,8	0,4
StdevX	1,6	1,0	1,6	1,5	1,4	0,9	1,0	1,0	2,1	1,2	2,3	1,3	1,2	1,0	0,9	0,8
Ref	-22,4	-5	-8,4	13,7	5,3	0	1	1,4	-3,8	-49,8	-6,1	-15,1	-9,7	-4,5	0,4	-1,7

IMMW17 18-23 Sept 2011 Barcelona Spain J. Garcia CERN-TE-MSC
•11

Mean Beam Quadrupole CLIC T1 prototype measurements

Current cycle harmonics results

Harmonics																
@ 3 mm	b3	b4	b5	b6	b7	b8	b9	b10	a3	a4	a5	a6	a7	a8	a9	a10
X	-25.1	13.1	1.5	305.0	-4.6	1.0	-0.6	-14.6	-5.5	-4.6	3.2	123.0	0.3	1.0	1.4	-13.3
Y	-25.1	-0.2	6.7	295.0	-5.5	0.3	-1.2	-11.0	-10.5	-11.8	7.3	148.6	-0.1	-0.3	1.4	-15.1
Average	-25.1	6.5	4.1	300.0	-5.1	0.6	-0.9	-12.8	-8.0	-8.2	5.2	135.8	0.1	0.3	1.4	-14.2
Cn	26.5	12.9	6.7	329.5	5.1	0.9	1.7	19.2								
Cn Ref	14.3	23.6	138.6	427.8	10.2	4.8	48.5	215.0								

Ref. coil measurement : O. Dunkel presentation at this workshop

IMMW17 18-23 Sept 2011 Barcelona Spain J. Garcia CERN-TE-MSC
•14

Conclusions

- LINAC4 system operational and ready for pulsed magnets
- Axis measurements Ok and new ideas to be tested
- SSVW harmonics method gives very interesting results
- Challenge of very small apertures seems to have solutions
- Still work to understand better the system
- A new system to be developed with the knowledge acquired

