Stretched-wire measurements of multipole magnets at the ESRF

Gaël LE BEC, Joel CHAVANNE, Christophe PENEL

IMMW 17, ALBA, September 2011
Contents

Introduction

Theoretical aspects

Accuracy

Measurement bench

Results
Context

ESRF Upgrade

- Longer straight sections: 5 m → 6 / 7m
- Lower vertical emittance, improved position diagnostics, etc.

New Magnets

- Shorter quadrupoles and sextupoles
- Permanent Magnet steerers
Introduction

Stretched Wire Measurements

• Moving SW
• Vibrating SW (see next talks)

Basic measurements

Longitudinal field integral

\[I = \int Bdl = -\frac{e}{v} \]

Integration and time averaging

\[I = \frac{1}{L} \int e \, dt \quad \Rightarrow \quad I \approx -\frac{\langle e \rangle T}{L} \]

Applications

Insertion devices
Field gradient, sextupole strength…
Introduction

Multipoles Analysis

Complex potential

\[A = A + iV \]

Multipole expansion

\[A = \sum_{n=0}^{\infty} c_n z^n \]

\[c_n = -\frac{b_n + i a_n}{n \rho_0^n} \]

SW basic multipole measurements

- Circular motion
- Fourier analysis
- Wire position errors
- No “bucking” available

Example

- ESRF Quadrupole
- Parasitic multipoles

Low accuracy

Example graph of multipole measurements.
Theory

Matrix formalism

Complex field integral

\[I_{\parallel \perp} = I_{\perp} + i I_{\parallel} \]

\(I_{\perp} \) is perpendicular to the SW motion, measured

\(I_{\parallel} \) is parallel to the SW motion, not measured

Can be written as

\[I_{\parallel \perp} = -e^{i\theta} (1, \ldots, z^{n-1})(c_1, \ldots, N c_N)^T \]

For a set of measurements:

\[
\begin{pmatrix}
I^1_{\parallel \perp} \\
\vdots \\
I^M_{\parallel \perp}
\end{pmatrix}
= \begin{pmatrix}
e^{i\theta_1} & \cdots & e^{i\theta_1} (z_1) & \cdots & b_1 + i a_1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
e^{i\theta_M} & \cdots & e^{i\theta_M} (z_M) & \cdots & b_N + i a_N
\end{pmatrix}
\]

The measurements are expressed as:

\[
\begin{pmatrix}
I^1_{\perp}, \ldots, I^M_{\perp}
\end{pmatrix}^T = (\text{Re} Z, \text{Im} Z)(b_n, \ldots, a_n)^T
\]

with

\[Z_{mn} = e^{i\theta_m} \left(\frac{z_m}{\rho_0} \right)^{n-1} \]
Theory

Effect of measurement length

\[Z_{mn} = \frac{1}{L} \int e^{i\theta_m} \left(\frac{z_m}{\rho_0} \right)^{n-1} dz \]

Measured field integral

\[\mathbf{I} = \mathbf{T}\mathbf{C} \quad \rightarrow \text{Simulation from SW trajectory and multipoles} \]

Field multipoles

Least square inversion

\[\hat{\mathbf{C}} = (\mathbf{T}^T\mathbf{T})^{-1}\mathbf{T}^T\mathbf{I} \]

Advantages

• Valid for any trajectory
• Position errors are taken into account
Theory

Multipole Compensation

• SW parallel to the main multipole field lines
• Measurements at two radii at least

Similar to “bucked” coils

Extension to rotating coils

• Simulation of coil errors
• Combining several rotating coil measurements

Compensation of the 4-pole

Multiple rotating coil measurements
Accuracy

Linear measurements

Field Integral

\[\frac{\Delta I}{I} = \frac{\Delta L}{L} \]

Gradient

\[G_{k}^{\text{meas}} = \frac{I_{k+1}^{\text{meas}} - I_{k-1}^{\text{meas}}}{s_{k}} \]

\[= G_{k} + \Delta G_{k} \]

with

\[|\Delta G_{k}| \leq G_{k} \frac{\Delta S}{S} + \frac{1}{S} \frac{\Delta L}{L} \left(|I_{k+1}| + |I_{k-1}| \right) \]
Accuracy

Numerical simulations

Multipoles and Trajectory

Several sample Fields and Estimated Multipoles

Sensitivities

Block diagram of the measurement model
Measurement bench

- **Wire**
 - 100 um x 1.4 m

- **Linear stages**
 - Newport ILS-250CC

- **Motion Controller**
 - Newport XPS

- **Granite Table**
 - 60 x 60 cm² cross section

- **Nanovoltmeter**
 - Keitley 2182 A

- **FARO Arm**
Measurements

Dipole
Max. field integral: 5×10^{-2} Tm

PM Steerer

Results
- Linear measurement \rightarrow poor accuracy
- Multipole measurements are better
Measurements

Quadrupole

Gradient: 12.8 Tm/m; Max. field integral: 0.386 Tm

Results:
- Multipole compensated trajectory gives better accuracy
- Poor accuracy of linear measurements
Measurements

Sextupole
Strength: 76.7 Tm/m²; Max. field integral: 3.45 \times 10^{-2} \text{Tm}

Results:
• Multipole compensated trajectory is better
• Circular trajectory gives acceptable accuracy
Conclusion

Theory
• Matrix formalism & least square approach
• Analysis of arbitrary trajectory
• SW “bucking” is available (compensated trajectories)
• Numerical simulations for sensitivity and accuracy analysis

Measurements
• Linear measurements are not accurate
• Multipole compensated trajectories give the best results
• No reference magnet used

Perspective
• Elliptic multipoles
• Non-circular trajectories