

Stretched-wire measurements of multipole magnets at the ESRF

Gaël LE BEC, Joel CHAVANNE, Christophe PENEL

IMMW 17, ALBA, September 2011

Contents

Introduction

Theoretical aspects

Accuracy

Measurement bench

Results

Context

ESRF Upgrade

- Longer straight sections : 5 m \rightarrow 6 / 7m
- Lower vertical emittance, improved position diagnostics, etc.

Insertion devices straingth section at the ESRF

New Magnets

- Shorter quadrupoles and sextupoles
- Permanent Magnet steerers

Introduction

Stretched Wire Measurements

- Moving SW
- Vibrating SW (see next talks)

Basic measurements

Longitudinal field integral

$$I = \int Bdl = -\frac{e}{v}$$

Integration and time averaging

$$I = \frac{1}{L} \int e \, dt \qquad \qquad I \approx -\frac{\langle e \rangle T}{L}$$

Applications

Insertion devices

Field gradient, sextupole strength...

SW field integral measurement

Introduction

Multipoles Analysis

Complex potential

A = A + iV

Multipole expansion

 $\boldsymbol{A} = \sum_{n=0}^{\infty} \boldsymbol{c}_n \ \boldsymbol{z}^n$

 $\boldsymbol{c_n} = -\frac{b_n + i \, a_n}{n \, \rho_0^n}$

SW basic multipole measurements

Multipoles $[10^4 b_2]$

- Circular motion
- Fourier analysis
- Wire position errors
- No "bucking" available

Example

- ESRF Quadrupole
- Parasitic multipoles

Basic SW quadrupole measurement

 θ_m

 Z_m

Arbitrary wire trajectory

X

Theory

Matrix formalism

Complex field integral

$$I_{//\perp} = I_{\perp} + i I_{//}$$
 I_{\perp} is \perp to the SW motion, measured $I_{//}$ is // to the SW motion, not measured

Can be written as

$$I_{//\perp} = -e^{i\theta}(1,...,z^{n-1})(c_1,...,Nc_N)^T$$

For a set of measurements:

$$\begin{bmatrix} I_{//\perp}^{I} \\ \vdots \\ \vdots \\ I_{//\perp}^{M} \end{bmatrix} = \begin{pmatrix} e^{i\theta_{1}} & \cdots & e^{i\theta_{1}} \left(\frac{z_{I}}{\rho_{0}}\right)^{N-1} \\ \vdots \\ e^{i\theta_{M}} & \cdots & e^{i\theta_{M}} \left(\frac{z_{M}}{\rho_{0}}\right)^{N-1} \end{pmatrix} \begin{pmatrix} b_{1} + i a_{1} \\ \vdots \\ \vdots \\ b_{N} + i a_{N} \end{pmatrix} \downarrow \end{pmatrix} \downarrow \qquad The measurements are expressed as:$$

$$\begin{bmatrix} I_{\perp}^{I}, \dots, I_{\perp}^{M} \end{bmatrix}^{T} = \underbrace{(\operatorname{Re} \mathbf{Z}, \operatorname{Im} \mathbf{Z})}_{\mathbf{T}} \underbrace{(\dots, b_{n}, \dots, a_{n}, \dots)^{T}}_{\mathbf{C}} \end{pmatrix}$$
with $\mathbf{Z}_{mn} = e^{i\theta_{m}} \left(\frac{z_{m}}{\rho_{0}}\right)^{n-1}$

Theory

Effect of measurement length

$$\boldsymbol{Z}_{mn} = \frac{1}{L} \int e^{i\theta_m} \left(\frac{\boldsymbol{z}_m}{\rho_0}\right)^{n-1} d\boldsymbol{z}$$

Measured field integral

 $I = TC \rightarrow$ Simulation from SW trajectory and multipoles

Field multipoles

Least square inversion

 $\hat{\mathbf{C}} = (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T \mathbf{I}$

Advantages

- Valid for any trajectory
- Position errors are taken into account

Theory

Multipole Compensation

- SW parallel to the main multipole field lines
- Measurements at two radii at least

Extension to rotating coils

- Simulation of coil errors
- Combining several rotating coil measurements

Compensation of the 4-pole

Multiple rotating coil measurements

Accuracy

Linear measurements

Field Integral

$$\frac{\Delta I}{I} = \frac{\Delta L}{L}$$

Gradient

$$G_k^{meas} = \frac{I_{k+1}^{meas} - I_{k-1}^{meas}}{\frac{s_k}{s_k}}$$
$$= G_k + \Delta G_k$$

Parameters for gradient calculations

with
$$|\Delta G_k| \leq \left|G_k \frac{\Delta S}{S}\right| + \frac{1}{S} \left|\frac{\Delta L}{L}\right| (|I_{k+1}| + |I_{k-1}|)$$
 Field dependence

Accuracy

Numerical simulations

Trajectory

Block diagram of the measurement model

A light for Science

Measurement bench

Nanovoltmeter Keitley 2182 A

11

FARO Arm

Measurements

Dipole

Max. field integral: 5 10⁻² Tm

PM Steerer

Dipole field measurements

Results

- Linear measurement \rightarrow poor accuracy
- Multipole measurements are better

Measurements

Quadrupole

Gradient: 12.8 Tm/m; Max. field integral: 0.386 Tm

- Multipole compensated trajectory gives better accuracy
- Poor accuracy of linear measurements

Measurements

Sextupole

Strength: 76.7 Tm/m²; Max. field integral: 3.45 10⁻² Tm

• Circular trajectory gives acceptable accuracy

15

Conclusion

Theory

- Matrix formalism & least square approach
- Analysis of arbitrary trajectory
- SW "bucking" is available (compensated trajectories)
- Numerical simulations for sensitivity and accuracy analysis

Measurements

- Linear measurements are not accurate
- Multipole compensated trajectories give the best results
- No reference magnet used

Perspective

- Elliptic multipoles
- Non-circular trajectories