

# Magnet design, manufacturing and measurements at *Med*Austron

17<sup>th</sup> International Magnetic Measurement Workshop La Mola Resort, Barcelona, Spain September 2011

Th. Zickler on behalf of the MedAustron magnet team



### Content

#### Introduction to MedAustron

- Magnets for MedAustron
- <u>Specific magnetic</u> <u>measurements</u>
- The synchrotron main dipole
- Eddy currents
- Electrical steel
- The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

#### <u>Summary</u>

- Introduction to MedAustron
  - Magnets for MedAustron
  - Specific magnetic measurements
    - Magnetic measurements apart from end-control
    - The synchrotron main dipole
    - Eddy currents
    - Electrical steel
    - The synchrotron quadrupole prototype
- Magnetic Measurement Program
  - Summary & conclusions



# Introduction to MedAustron

ntroduction to MedAustron

- <u>Magnets for</u> <u>MedAustron</u>
- Specific magnetic measurements
- The synchrotron main dipole
- Eddy currents
- Electrical steel
- The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

MedAustron is located in Wiener Neustadt (50 km north of Vienna) next to the future site of the new hospital



- Medical Treatment
  - Tumour treatment
  - Clinical research
- Non-clinical Research (NCR)
  - Medical Radiation Physics
  - Radiation biology
  - Experimental physics
- Accelerator operates 24/7





ebg MedAustron

### **Functional Areas – Main Floor**

### 





# **Accelerator Main Parameters**

- Introduction to MedAustron
- <u>Magnets for</u> <u>MedAustron</u>
- Specific magnetic measurements
- The synchrotron main dipole
- Eddy currents
- Electrical steel
- The synchrotron quadrupole
- <u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

- Synchrotron based (circumference 76 m)
- Ion species: protons and carbon ions
  - Optionally and at a later stage other ions with q/m>1/3 are possible
- Energy range
  - Proton: 60-250 MeV (medical)
    - Higher proton energy provided for experimental physics: up to 800 MeV
  - Carbon: 120-400 MeV/n

#### • Intensities (maximum) in irradiation rooms

- Proton: 1\*10<sup>10</sup> /cycle
- Carbon: 4\*10<sup>8</sup> /cycle
- Cycle time > 1 second



IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"



### Irradiation rooms

#### Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> program

<u>Summary</u>

#### IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"

#### Medical facility:

IR2

- Horizontal and vertical beam
- Protons and carbon ions
- IR3
  - Horizontal beam
  - Protons and carbon ions
- IR4

#### Non-clinical research facility:

- IR1
  - Horizontal beam line
  - Protons (up to 800 MeV) and carbon ions





# Medical Treatment Capacity

#### Introduction to MedAustron

Magnets for MedAustron

<u>Specific magnetic</u> <u>measurements</u>

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

- 24.000 single irradiations (fractions) per year
  - Patient treatment typically requires 20 fractions
  - Patient receives one fraction/day during ~4 weeks
- MedAustron capacity ~1200 patients per year
  - About 100 patients/day
- Optimizing for optimum accelerator occupancy during medical mode
- 3 medical irradiation rooms
  - 2+1 fixed beams and one proton gantry
  - Operation of three irradiation rooms in parallel
  - About 25 minutes per treatment room and patient

۲



### **Implementation Strategy**

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

Austrian Accelerator Centre is at CERN

• Austrian local know-how on this sector not available

EBG MedAustron - CERN partnership:

- Build up an EBG MedAustron Accelerator team at CERN
- Currently ~40 MedAustron staff at CERN
- Team integration in the technical groups at CERN to establish know-how transfer
- Design, procurement and installation with the support of CERN experts
- Operation in Wiener Neustadt by the EBG MedAustron team

•



### **Project Schedule**

#### Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

IMMW17 Barcelona "Magnet design, m measurements at M

• Summer 2008

- End 2010
- February 2011
- September 2012March 2013
- Mid 2014
- 2015

Start of project planning and team building EIA notification

Ground breaking and civil engineering start

Start of accelerator installation (sequential)

Start of beam commissioning (sequential)

Start of medical commissioning

First patient treatment





# **Civil engineering**

#### Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"

10. September 2011



10



### Status

Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> program

<u>Summary</u>

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"

#### Contracts concluded

- 3 ECR ion sources & spectrometer lines
- Injector RFQ und IH tanks & RF amplifiers
- Main magnets
- Special magnets
- Power converters

#### Preparation of injector test stand at CERN started





### Magnet Work Package

Introduction to MedAustron

<u>Magnets for</u> MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

Scope of the Magnet Work package:

"Design, engineering, construction, procurement, production followup, testing, measurements, installation, commissioning of all 'standard' electro-magnets and magnet components for LEBT, MEBT, Synchrotron, HEBT and treatment rooms"

- > 285 magnets in total
- 30 different types!
- Size ranges from a few kg to 75 tonnes
- Responsibility for p-Gantry magnets within Magnet WP
- Special magnets (kicker, bumper, septa) not included

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"



# List of Magnets

|                               | Magnet type                     | Name           | Installation               | Number of units              |  |  |  |  |  |
|-------------------------------|---------------------------------|----------------|----------------------------|------------------------------|--|--|--|--|--|
| Introduction to               | Solenoid                        | MSO-A          | S3, (S4), LE               | 3                            |  |  |  |  |  |
| MedAustron                    | Spectrometer                    | MBH-A          | S1, S2, S3, (S4)           | 4                            |  |  |  |  |  |
|                               | LE Steering dipole (H + V)      | MCX-A          | S1, S2, S3, (S4), LE       | 17                           |  |  |  |  |  |
| Magnets for                   | LE Quadrupole                   | MQZ-A          | S1, S2, S3, (S4), LE       | 20 (=6 triplets + 1 singlet) |  |  |  |  |  |
| MedAustron                    | Switching dipole                | MBS-A          | LE                         | 2 [+1]                       |  |  |  |  |  |
|                               | ME Bending dipole               | MBH-B          | ME                         | 3 [+ 1]                      |  |  |  |  |  |
| Specific magnetic             | ME Quadrupole                   | MQZ-B          | ME                         | 10 [+ 1]                     |  |  |  |  |  |
| measurements                  | ME Steering dipole (H + V)      | MCX-B          | ME                         | 8 [+ 1]                      |  |  |  |  |  |
|                               | MR Bending dipole (+T4 bending) | MBH-C, (MBH-D) | MR, PCR, T4                | 16 + 1 (+2) [+ 1]            |  |  |  |  |  |
| ne synchrotron<br>main dipole | MR Quadrupole (+ skew)          | MQZ-C, (MQS-C) | MR                         | 12 (+ 1) [+ 2]               |  |  |  |  |  |
|                               | MR Sextupole (+ resonance)      | MXZ-C, (MXR-C) | MR                         | 5 (+ 1) [+ 1]                |  |  |  |  |  |
| Eddy currents                 | MR Steering dipole (H / V)      | MCH-C, MCV-C   | MR                         | 10 [+ 1] + 8 [+ 1]           |  |  |  |  |  |
|                               | MR Betatron Core                | MIN-C          | MR                         | 1                            |  |  |  |  |  |
| Electrical steel              | HE Bending dipole               | MBH-E, MBV-E   | EX, T1, T2, T3, V2         | 12 [+1]                      |  |  |  |  |  |
| The second sectors            | HE Quadrupole                   | MQZ-E          | EX, T1, T2, T3, T4, H2, V2 | 78 [+3]                      |  |  |  |  |  |
| quadrupole                    | HE Steering dipole (H / V)      | MCH-E, MCV-E   | EX, T1, T2, T3, H2, V2     | 17 [+1] + 17 [+ 1]           |  |  |  |  |  |
| quadraporo                    | Vertical bending dipole 90°     | MBV-F          | V2                         | 1                            |  |  |  |  |  |
| Magnetic                      | Scanning dipole (H)             | MSH-E          | T1, T2, T3, V2             | 4 [+ 1]                      |  |  |  |  |  |
| measurement                   | Scanning dipole (V)             | MSV-E          | T1, T3, T3, V2             | 4 [+ 1]                      |  |  |  |  |  |
| program                       | Gantry bending dipole 58°       | MBR-G          | Τ4                         | 2                            |  |  |  |  |  |
|                               | Gantry bending dipole 90°       | MBR-H          | T4                         | 1                            |  |  |  |  |  |
| <u>Summary</u>                | Gantry Quadrupole (+ corrector) | MQZ-G (MQC-G)  | T4                         | 7 (+ 1) [+ 1]                |  |  |  |  |  |
|                               | Gantry Steering dipole (H + V)  | MCX-G          | T4                         | >4 (t.b.c.)                  |  |  |  |  |  |
|                               | Gantry Sextupole                | MXZ-G          | T4                         | 2 (t.b.c.)                   |  |  |  |  |  |
|                               | Gantry scanning dipole (H)      | MSH-G          | T4                         | 1                            |  |  |  |  |  |
|                               | Gantry scanning dipole (V)      | MSV-G          | Τ4                         | 1                            |  |  |  |  |  |



# Design, engineering and production

#### Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

### Magnet team at CERN:

- 2 engineers
- 3 physicists
- 2 technical engineers
- 3 technicians

### Magnetic design at CERN

- Size of team requires to do design work in series
- Critical or large number types first
- Comprehensive 2D and 3D field computations
- Studies of field quality, transient and hysteresis effects

### Manufacturing in industry

- According to detailed technical specifications
- Close collaboration between MedAustron and partners in industry

ebg MedAustron

Thomas



# Design and engineering

Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"



15



# Specific magnetic measurements

| Introduction to<br>MedAustron                           | Magnetic meas<br>throughout                                             |
|---------------------------------------------------------|-------------------------------------------------------------------------|
| <u>Magnets for</u><br><u>MedAustron</u>                 | Design & engine<br>• Characteriz                                        |
|                                                         | <ul><li>Benchmark</li><li>Testing of particular</li></ul>               |
| The synchrotron<br>main dipole                          | <ul><li>Selection c</li><li>Testing of r</li></ul>                      |
| Eddy currents                                           | Production                                                              |
| Electrical steel                                        | <ul><li>Design vali</li><li>Acceptance</li></ul>                        |
| quadrupole                                              | Definition                                                              |
| <u>Magnetic</u><br><u>measurement</u><br><u>program</u> | <ul><li>Post-production</li><li>Special me</li><li>Systematic</li></ul> |
| Summary                                                 | Operation                                                               |
|                                                         | <ul> <li>B-train</li> </ul>                                             |

urements are needed during all phases the entire project, not only for end-control!

#### ering

- zation of material properties
- king finite element models
- prototypes
- of raw materials
- manufacturing techniques and processes
- idation before series production (pre-series)
- e tests of raw materials
- of end-shim profile
- asurements on individual magnets
- acceptance measurements on series magnets

IMMW17 Barcelona "Magnet design, manufacturing and

measurements at MedAustron<sup>\*</sup>



# Example: The Synchrotron Main Dipole

#### Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

### Requirements:

- Operation: 1 Hz
- Field stabilization time after ramp end: 100 ms
- Number of dipole magnets in series: 16
- Operational field levels: 90 mT 1.5 T
- Field quality:  $\pm 2 \times 10^{-4}$  ( $\pm 60 \text{ mm} \times \pm 30 \text{ mm}$ )
- Uniformity of magnetic lengths: 1×10<sup>-3</sup>

### FE-Design using OPERA:

- 2D static (isotropic/anisotropic): pole profile optimization
- 3D static: integrated field quality incl. particle tracking
- 2D & 3D transient: eddy current effects in the tension bars and pole ends
- 2D DEMAG: hysteresis effects and residual fields

M. Stockner at al: *Design and Optimization of the MedAustron Synchrotron Main Dipoles*, IPAC Proceedings, Spain, 2011



# Example: The Synchrotron Main Dipole

#### Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole



#### Design features:

- Laminated curved yoke
- Pole profile with shims, central bore and Rogowski roll-off
- Removable end shims with Rogowski profile
- High-quality low-carbon electrical steel supplied by VOEST-Alpine
- Stainless steel tension bars







### PCB-Fluxmeter development





### Eddy currents

Introduction to MedAustron

- <u>Magnets for</u> <u>MedAustron</u>
- Specific magnetic measurements

The synchrotron main dipole

#### Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

- Significant magnetic field delay with respect to coil current has been observed in similar magnets
- Time constants up to 600 ms measured
- Field error at ramp end up to 0.41 %
- Weak dependence on dI/dt
- Strong dependence on flat top field level



- Poor steel quality ?
- Poor insulation between laminations ?
- Eddy currents from longitudinal field components in the magnet ends ?
- Eddy currents in the non-laminated tension bars?





# Eddy currents - static case





# Eddy currents



"Magnet design, manufacturing and measurements at MedAustron"



# Eddy currents





### Vacuum chamber

Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

#### Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

#### <u>Summary</u>

For cost optimization, a thick vacuum chamber was proposed for the synchrotron main dipoles

- Impact on field quality and dynamic behavior due to:
  - wall thickness
  - material (resistivity)
  - reinforcement ribs
  - brazing
- Calculations showed:
  - Field errors at injection acceptable





### Vacuum chamber

Introduction to MedAustron Differential measurement with two search coils

MedAustron

Magnets for

pecific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>



 Measured time constant in the vacuum chamber (20 ms) not larger than magnet time constant

• Result: Proposed vacuum chamber design is acceptable



### **Electrical Steel**

Introduction to MedAustron

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

### ≻700 tonnes needed for MedAustron magnets Strategy:

- Common procurement for all magnets and dispatch to magnet manufacturers' upon request
- Reproducible quality, known properties, minimum delays
- For synchrotron magnets: measurement, selection and sorting to assure most homogenous quality
- Contract with VOEST-Alpine



#### Properties:

- Cold rolled, non-grain oriented, low-carbon steel
- 1 mm thick steel sheets, grade Isovac 1300-100A
- Two-side epoxy coating for electrical insulation and bonding
- Thickness variation <7 µm perpendicular to the rolling direction
- Permeability variation < 4%, coercivity variation < ±2 A/m</li>



measurements at MedAustron"

# Steel anisotropy: input for FEM





# Permeability measurements



<u>Magnets for</u> <u>MedAustron</u>

<u>Specific magnetic</u> measurements

The synchrotron main dipole

Eddy currents

**Electrical steel** 

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>





# Statistics: selecting materials



IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"



# Synchrotron quadrupole

Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

<u>Summary</u>

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"

- Field computations revealed that standard steel is not suitable for synchrotron quads and sextupoles:
  - Long time constant
  - Large residual fields
- Different steel grade proposed by VOEST (Isovac 250-35HP)
- Benchmark measurements on prototype



Thomas Zickler



### Dynamic field measurements

Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

Summary

Dynamic measurements with static coil to determine eddy current amplitude, stabilization time and time constant



**Result:** Stabilization time constant acceptable

Courtesy of A. Beaumont

Reasonable good correlation with OPERA 3D FE-simulation

IMMW17 Barcelona "Magnet design, manufacturing and measurements at MedAustron"



### Hysteresis measurements

Introduction to MedAustron

main dipole

Magnets for MedAustron

Magnetic

Summary

measurement

program

• Rotating coils measurement of the residual gradient as function of the excitation current



• Result: Residual field is acceptable

Courtesy of A. Beaumont

- Poor correlation with OPERA DEMAG-simulation results
- Further efforts needed to improve FE-model



# Magnetic measurement program

Introduction to MedAustron

Magnets for MedAustron

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

lagnetic measurement program

<u>Summary</u>

- NMR/Hall Probes
  - 3D Field map
  - Fringe field
  - Transfer function
  - Hysteresis
  - Local field
  - Time constant
- Rotating coils
  - Field integral
  - Multipole components
  - Transfer function
  - Hysteresis
  - Magnetic axis
  - Roll angle
  - Time constant \*

- Short coils
  - Transfer function
  - Hysteresis
  - Local field
- Fluxmeter or search coil
  - Tracking
  - Field integral
  - Transfer function
  - Time constant
- Shimming
  - Adjustment of magnetic length
  - Multipole suppression

### Magnetic measurement program

#### Introduction to MedAustron

#### Measurement strategy:

<u>Magnets for</u> <u>MedAustron</u>

Specific magnetic measurements

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measuremen</u> program

<u>Summary</u>

100% of the magnets will be measured

At CERN: prototypes, all pre-series, small series and all series dipoles

At magnet supplier or external company: series magnets (quadrupoles, corrector dipoles, sextupoles) by using rotating coils

#### Measurements at CERN:

- 40 dipoles and 30 pre-series and small series in 2 years (=25%)
- Special measurements: fringe fields, transients, time constants, residual field, hysteresis, etc ...

The amount of magnets and the complexity of the measurements require a careful planning



### Magnetic measurement program

| Introduction to                         |                                           |                           |     | NMR/Hall Probe |       |         |              |            | Rotating coil |          |                |              |       |            |      |          | Short coil   |       |       | neter/ | Shimming    |              |          |              |                  |
|-----------------------------------------|-------------------------------------------|---------------------------|-----|----------------|-------|---------|--------------|------------|---------------|----------|----------------|--------------|-------|------------|------|----------|--------------|-------|-------|--------|-------------|--------------|----------|--------------|------------------|
| MedAustron                              |                                           |                           |     |                |       |         |              |            |               |          | S              |              |       |            |      |          |              |       |       |        |             |              |          |              | _                |
| <u>Magnets for</u><br><u>MedAustron</u> |                                           |                           | ber | map            | field | e field | fer function | constant   | resis         | integral | pole component | fer function | resis | letic axis | ngle | constant | fer function | resis | field | ing    | rated field | fer function | constant | letic length | pole suppressior |
| Spacific magnatic                       |                                           | Magnat type               | Jum | ield           | ocal  | ring    | rans         | ime        | lyste         | ield     | 1 ulti         | rans         | lyste | Aagr       | olla | ime      | rans         | lyste | ocal  | rack   | nteg        | rans         | ime      | Aagr         | 1 ulti           |
| <u>Specific magnetic</u>                |                                           | LEPT Sportromotor         | 2   | <u>ц</u>       | <br>  |         |              | _ <b>⊢</b> |               | ш.       | 2              |              |       | 2          | R    | -        | <u> </u>     |       |       |        | =           |              |          |              | 2                |
| <u>measurements</u>                     | ß                                         |                           | 2   | 5              | <br>  | r<br>c  | 3            |            |               | c        | c              | c            | D     |            |      |          |              |       | D     |        |             |              |          |              |                  |
|                                         | ine                                       | MEBT bending              | 1   |                | D     | D       |              |            |               | S        | <u> </u>       | S<br>C       | F     |            |      | D        |              |       | F     |        |             |              |          |              |                  |
|                                         | nag                                       | Synchrotron bending       | 20  | P              | S     | P       |              |            | Р             | 5        | ,              | 5            |       |            |      | -        | Р            |       | P     | S      | S           | S            | S        | S            | S                |
| The synchrotron                         | 6                                         | HEBT bending              | 13  | P              | S     | P       |              |            | P             |          |                |              |       |            |      |          | P            |       | P     | S      | S           | S            | S        | S            | P                |
| main dipole                             | din                                       | V2 90 degree              | 1   |                | P     | P       |              |            | P             |          |                |              |       |            |      |          |              |       |       |        | P           | P            | P        | P            | P                |
|                                         | 3en                                       | Gantry 90 degree          | 1   |                | P     | P       |              |            | P             |          |                |              |       |            |      |          |              |       |       |        | P           | P            | P        | P            | P                |
|                                         | -                                         | Gantry 58 degree          | 2   |                | P     | P       |              |            | P             |          |                |              |       |            |      |          |              |       |       | S      | S           | S            | P        | S            | P                |
| Eddy currents                           |                                           | LEBT H+V                  | 12  | S              | S     |         | S            |            |               | Р        | Р              | Р            | Р     |            |      | Р        |              |       |       |        |             |              |          |              |                  |
|                                         | ng<br>ets                                 | MEBT H+V                  | 9   |                | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | Р        |              |       | Р     |        |             |              |          |              |                  |
|                                         | eri<br>gne                                | Synchrotron H/V           | 20  |                | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | Р        |              |       | Р     |        |             |              |          |              |                  |
| Electrical steel                        | Ste                                       | HEBT H/V                  | 36  |                | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | Р        |              |       | Р     |        |             |              |          |              |                  |
|                                         |                                           | Gantry H+V                | 4   |                | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | Р        |              |       | Р     |        |             |              |          |              |                  |
|                                         | <b>.</b>                                  | Scanner H+V               | 10  | Р              | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | S        |              |       | Р     |        |             |              |          |              |                  |
| The synchrotron                         | Scanner                                   | Gantry scanner H+V        | 2   | Р              | S     | Р       |              |            |               | S        | S              | S            | Р     |            |      | S        |              |       | Р     |        |             |              |          |              |                  |
| quadrupole                              |                                           | LEBT quad (triplet)       | 20  |                |       |         |              |            |               | S        | S              | S            |       | S          | S    |          |              |       | S     |        |             |              |          |              |                  |
|                                         | 6                                         | LEBT solenoid             | 3   | S              | S     | S       | S            |            |               |          |                |              |       |            |      |          |              |       |       |        |             |              |          |              |                  |
|                                         | Ise                                       | MEBT quad                 | 11  |                |       |         |              |            |               | S        | S              | S            | Р     | S          | S    |          |              |       | S     |        |             |              |          | Р            | Р                |
| Magnetic                                | le                                        | Synchrotron quad          | 13  |                |       |         |              |            |               | S        | S              | S            | Р     | S          | S    | Р        |              |       | S     |        |             |              |          | S            | S                |
| measurement<br>program                  | tic                                       | Synchrotron skew quad     | 2   |                |       |         |              |            |               | S        | S              | S            |       | S          | S    |          |              |       | S     |        |             |              |          |              |                  |
|                                         | un en | Synchrotron air core quad | 1   |                |       |         |              |            |               | S        | S              | S            |       | S          | S    |          |              |       | S     |        |             |              |          |              |                  |
|                                         | ă<br>Z                                    | Synchrotron sextupole     | 7   |                |       |         |              |            |               | S        | S              | S            | Р     | S          | S    | Р        |              |       | S     |        |             |              |          | Р            | Р                |
|                                         | -                                         | HEBT quad                 | 81  |                |       |         |              |            |               | S        | S              | S            | Р     | S          | S    | Р        |              |       | S     |        |             |              |          | Р            | Р                |
|                                         |                                           | Gantry quad               | 9   |                |       |         |              |            |               | S        | S              | S            | Р     | S          | S    | Р        |              |       | S     |        |             |              |          | Р            | Р                |
| Summary                                 |                                           | P = Pre-seri              | es  |                |       |         | (            | S =        | S S           | eri      | es             |              |       | C          | E    | 2N       |              |       | In    | du     | str         | у            |          |              |                  |



# **Summary & Conclusions**

Introduction to MedAustron

Magnets for MedAustron

<u>Specific magnetic</u> <u>measurements</u>

The synchrotron main dipole

Eddy currents

Electrical steel

The synchrotron quadrupole

<u>Magnetic</u> <u>measurement</u> <u>program</u>

#### Summary

• MedAustron is progressing well

- 40% of the design work is done
- Magnet production has started and is taking up speed
- Magnetic measurements are important for all project stages from design to operation
  - Reliable measurement results are essential to make correct design choices
- Series measurements at CERN and in industry will start soon
- Lots of interesting work with many technical challenges ahead of us



### ... to be continued...

Detailed measurement results and more highlights will be presented at the next IMMW... so see you hopefully in 2013!

### Thank you for your attention!

### Questions ?