JLAB 12GeV Upgrade Measurement Overview

Ken Baggett for the Metrology and Magnet Measurement Department

IMMW 17 Sept 18-23 2011 ALBA

What's happening at JLAB

- Jlab is in the midst of a major upgrade of the accelerator which will increase the energy from 6GeV to 12GeV to accommodate the experimental program in the new hall (Hall D).
- For magnet measurement this means:
 - Make the modifications to the magnets in the recirculation arcs and their power supplies to keep the higher energy beam confined to the existing beam path.
 - Measure the tenth arc-beamline to provide an extra pass through the North Linac.
 - QC and measure magnets for the new beamline connecting Hall D to the baseline accelerator
- Challenge for Magnet Measurement Group:
 - Meet throughput requirements for the upgrade project and
 - Meet measurement specifications

Design overview: 6mo Down Scope

Production Measurements over last year

Pre-Down Goals

- Measure 37 4m Dipoles
- Measure 130 correctors
- Measure 117 Quadrupoles

• 6MSD Baseline Goals

 Remove, refurbish, measure and reinstall West Arc (112 dipoles in Arcs 2, 4, 6, & 8)

Stretch Goals: Baseline plus

- Remove, refurbish, measure and reinstall an additional 64 dipoles (East: Arcs 7 and 9)
- (Total 176 dipoles)

*6MSD Magnet work timeline ~2.5 months

Rotating Coil System

Dipole Mapping Specs

- Spec for accuracy of <u>absolute strength (BL)</u> along an arc was fairly loose (0.4%)
- Spec for <u>precision</u> of strength measurements for matching along an arc are pretty tough (0.03%).
- Need all magnets along an arc to match at 0.1%.
- Still need knowledge of field quality (gradient).
- After 12GeV refurbishment and measurement still need to re-establish maps for 6GeV operations.
- Approach used to meet specs and throughput:
 - Stretched wire used to get BL and B'L on all magnets
 - Detailed maps with Hall probes and NMRs used to build map along curved trajectory.
 - Done for 10% sampling of arc dipoles.
 - Transformation map between curved and straight calculated from the sampling and applied to all

Our Magnet "Challenge"

- Need to create easy setups that still give accurate positioning
 - Mechanical stops for both magnets and measurement stages

- Lots of dipoles to process
 - Need measurement throughput rate of 3/day

Arc Dipole Upgrade Process

- Remove Dipoles from
 Tunnel
- Separate Magnet Cores
- Remove Vacuum Chamber
- Replace Insulation (EPDM), Thermal Switches, Coil Spacers
- Add "H-Steel"
- Add synchrotron radiation coils (3m and 4m dipoles)
- Flow Check
- Hi-pot
- Magnetically Measure
- Remove cover plate and re-install chamber
- Final QC
- Re-install
- Lots of potential for magnets to change during process

Stretched Wire measurements

- Stretched Wire was used for the majority of dipole mapping
 - System core: 4 μm Newport stages / HP3458A voltmeter
 - Need to verify measurement results match between the SW and Hall probe systems
- We measured consistency of the SW measurements over production period
 - Reference measurements (1 "check" / week)
 - Repeatability <0.026% throughout the 6MSD mapping.
 - Drift is still small
 - Could be result of moving to second stand.
 - Could be small changes in the gap between new "H-Steel" plates and older magnet steel

BL Deviations

SW Repeatability: B'L/BL (4m dipoles)

 Testing was done to determine the repeatability of the stretched wire system of predicting the dipole body gradient

Stdev = 0.0019%

Dipole Grid Mapping

- Needed way to map 2m, 3m and 4m "H" dipoles
 - Probe on a stick would not work
- 3 Part Solution
 - 5m Carbon Fiber Push Tray
 - Hall probe holder for 5 probes
 - Probe Trolley
 - Springs lock to magnet pole tip (X and Y)
- Proper alignment of landing pad difficult
 - Need to check alignment in a high derivative field
- Probe calibration for cos errors necessary often
 - Probes could pull out of holder seating

Dipole Mapping (cont)

- Field integral (BL) matching between measurement systems was acceptable
 - Hall probe grids and SW matched at the 0.01% level throughout production

- Spec for B'L was 0.08%, but wanted reporting much tighter
 - 0.005% σ

B'L from Detailed Grid Data

 Software was written to calculate B' normal to the trajectory using grid data by calculating x and z derivatives at each point and then applying a rotation matrix to the x and z derivatives.

- B'L is computed by integrating dB/dr along trajectory
 - This accounts for end effects

• For each Arc:

magnets

-Get wire-vs-curved offset for each current then average over 3

Arc 6 B'L/BL (Curved-straight)					
wire	274	410	547		
6A03	-0.027%	-0.026%	-0.022%		
6A29	-0.026%	-0.030%	-0.023%		
6A30	-0.028%	-0.029%	-0.028%		
Avg diff	-0.027%	-0.028%	-0.025%		

Use current-dependent offsets to "predict" curved-integral
 B'L/BL and compare to the actual B'L/BL from the curved-

integrals	"Error" in calculated B'L/BL				
	wire	274	410	547	
	6A03	0.000%	-0.002%	-0.002%	
	6A29	-0.001%	0.001%	-0.001%	
	6A30	0.001%	0.001%	0.003%	
_	Overall stdev (9pts): 0.002%				

Consistency of B'L/BL: 2, 4, 6, & 8

- Differences between curved data and stretched wire data fell within 0.005%/cm spec for reporting
 - Still see noise at this level using 5 points for calculation

-0.010%

Thomas Jefferson National Accelerator Facility

243

8A25

486

365

547^{6A30}

274

Jefferson Lab

410

B'L/BL : Perpendicular to Curved Trajectory

- B'L/BL calculated at different radius values
 - Results for each arc found to be well within specified acceptability range

Other Measurement Considerations

- Settling Time
 - Hall probe is within 0.01% of final value within <15sec.
 - LCW connections done first (by procedure) and 5 minute warm up at maximum current prior to measurement
- LCW Flow
 - Magnets were in tunnel for ~20 years.
 - Evidence of "dead heading" and over heating
 - All but 1 set of coils passed flow tests at allowable levels.
 - Failed coil restored to passing by acid flushing coil
- Probe Calibration
 - NMR measurements taken with each detailed grid
 - Single probe on stick used as "cosine correction" check for each magnet pass
 - Each hall probe calibrated against NMRs
 - Probe positions checked by alignment group

in cosine corrections for trolley probes

Matching Dipoles in the ARC

- Shim sets were used to bring each arc within 0.1% spec
 - Shims are 0.054"-0.057".
 - Assumed 0.054" for the calculations
 - Some excitation dependence seen in magnet-magnet differences
 - Gaps at interface points leading to varying saturation effects?
 - For final experiment, sets were optimized for 6 GeV ops.
 - Will re-optimize for 12 GeV next year.

BL matching

Arc 6: Wire measurements on 2m dipoles

Production Quad Measurements

- Integrator:
 - MetroLab 5025
- Radial Probes:
 - Circuit Board Design
 - (Dimarco IMMW 15)
- Transducers:
 - Danfysik Ultrastab 866
- Power supply:
 - Danfysik 7000
- Motion Control:
 - NI FW-7602 Stepper Motor
 - 4000 count encoder

- 57 QR Quadrupole Magnets
 - I = +-18.5A (1A increments)
 - LCW = 0.3 gpm
 - Mag Length = 14"
 - Mag Width/Height = 12"
 - Bore = 1"
 - Approx Strength = 10000 G / Amp (Gradient Integral)
 - Weight ~435lbs
- 57 QP Quadrupole Magnets
 - I = +-19A
 - LCW = 0.3 gpm
 - Length = 12"
 - Mag Width/Height = 12"
 - Bore = 1.5"
 - Approx Strength = 4500 G / Amp (Gradient Integral)
 - Weight ~380lbs

Rotating Coil Performance: Multipole tests

- QP aperture is 1.5"
 - No probe that size in the inventory
- Needed a new radial probe.
 - Circuit board probe?
- What we found:
- Pros
 - Fairly easy to draw up
 - Cheap to order
 - Quick delivery
 - Comparable performance to the traditional wound coils
 - Great signal to noise for multipoles
 - Compared well to existing wound probes
 - Calculated absolute strength compares at the 0.06% level (DBUCK coil compared to SW)
- Cons
 - Fewer turns so not as much signal
 - 2 Layers easy but had shorting issues with multiple layering.
 - Could overcome with manufacturing specs (but more tests add \$)

Production Quadrupole Measurements

- All 117 quadrupoles have been measured.
- Results:
 - Non-linear terms net <1/5 of the specification.
 - Quite similar "allowed" multipole content (n=2, 6, 10, 14....)
 - Strength variation in the populations at the 1% level.

Quadrupole Field

Moving Forward

- Focus will be on meeting throughput requirements for remaining production measurements
 - Measurement of ~30 new dipoles
 - C, H, and curved configurations
 - Refurbishment and measurement of ~80 altered dipoles to complete the spreaders and re-combiners
 - Measurement of 48 1m dipole
- Continued development of the linear stages
- Refinement of multi-probe trolley
 - Automated calibration

