

Measurement Challenges for the Magnet Projects at CERN

S. Russenschuck for the TE-MSC-MM Section and the Magnet Design Teams at CERN and the collaborating institutes

20.09.2011

➔ Linac4

- Permanent magnet quadrupoles
- Axis of RF drift tube
- LHC consolidation
 - Refurbished main dipoles and quadrupoles
 - Exchange of magnets in the next shutdown
- ➔ LHC upgrade
 - Wide aperture insertion quadrupoles
 - High field magnets (11 T separation dipole, FRESCA2, HQ)
- ➔ MedAustron, Ion-Therapy Project
 - Strongly curved dipole magnets

→ LHeC

Small apertures, PCB Coil, Vibrating wire

Flexible Framework for Magnetic Measurements (FFMM)

Quench Antenna

PCB Fluxmeter, Field description for strongly curved magnets

Recurrent

- ➔ Injector maintenance and upgrade
 - PS (Multi -turn extraction), SPS
 - Booster
 - Elena
 - High Intensity ISOLDE
 - Fast Cycling Magnet (FCM) for PS2
- Controls and Instrumentation of accelerators
 - B-train (Booster, PS, AD, SPS, Leir)
 - Fidel and tracking tests
- ➔ Field computation and analysis of measurements
 - Magnetic model of the LHC (FIDeL)
- ➔ Magnetic measurements on materials

Analysis and controls for compensation of saturation

Strongly curved magnets

Eddy currents, end-effects and hysteresis

Ferrimagnetic Resonance Marker

Fast Rotating Measurement equipment (FAME), Fast Digital Integrator

LINAC4 (Replacing Linac2 as Injector to the PS Booster)

Linac guadrupoles

Transfer line steerers

Fast-pulsed magnets; 0.2 ms rise time:

Hysteresis and power supply stability Eddy currents High angular precision in measurement

Arpaia et al., 2010 I2TMC Conference

LINAC4

Limited space in Cell-Coupled Drift-Tube Linac (DTL) modules Samarium Cobalt permanent magnets Integrated gradient of 1.3-1.6 Tesla 45 mm aperture, Field quality tuning with iron shims

Axis, geometry, and harmonics measured (Stretch wire, presentations by J. Garcia-Perez)

Status report by T. Zickler at IPAC 11

CLIC Layout and Damping Ring Wiggler R&D

Collaboration with BNIP and KIT for the installation of complete, conduction cooled unit

First and second field integrals with stretch wire

Short model magnets

CLIC

Main Beam Quadrupole

Final Focus Quad, Gradient: > 530 T/m, Aperture Ø: 8.25 mm

Procurement of one long and two short Main Beam Quad prototypes Manufacture of a Hybrid Quadrupole for the Final Focus Procurement of several Drive Beam Quadrupole units

CLIC Quadrupole Field Measurement with Vibrating Wire

AC current (40 Hz for 2-m-long wire). Phototransistors acquire the amplitudes Ax and Ay of the wire oscillation in x and y directions, which are proportional to the magnetic field components B_x and B_y .

Printed Circuit Board Technology for coil Manufacture with 7.75 mm in diameter

First harmonic measurements

Presentations by O. Dunkel

MedAustron

*Med*Austron: Centre for ion therapy and research in Wiener Neustadt, Austria

Consists of 3 ion sources, a synchrotron, 4 treatment rooms, incl. a p-Gantry About 300 magnets of 26

Synchrotron main bending magnet assembly

HEBT quadrupole magnet assembly

Presentation by T. Zickler

Printed Circuit Boad (PCB) for Curved Fluxmeter

ELENA (Extra Low Energy Antiprotons)

Eigensolutions in Circular, Elliptic, Bipolar, Cartesian Coordinates

 $2b_0$

$$B_{\eta}(\eta,\psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(n \,\mathcal{A}_n \sinh n\eta \cos n\psi - n \,\mathcal{B}_n \cosh n\eta \sin n\psi \right)$$

$$\stackrel{*}{\underset{r}{\longrightarrow}} B_{\eta}(\eta_0,\psi) = \sum_{n=1}^{\infty} \left(B_n(\eta_0) \sin n\psi + A_n(\eta_0) \cos n\psi \right),$$

$$B_{\eta}(\eta,\psi) = \frac{1}{h_2} \frac{\partial A_z}{\partial \psi} = \frac{1}{a\sqrt{\cosh^2 \eta - \cos^2 \psi}} \frac{\partial A_z}{\partial \psi}$$

$$\tilde{B}_{\eta} = \frac{\partial A_z}{\partial \psi}$$

$$\tilde{B}_{\eta}(\eta,\psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(\tilde{B}_n(\eta_0) \frac{\cosh n\eta}{\cosh n\eta_0} \sin n\psi + \tilde{A}_n(\eta_0) \frac{\sinh n\eta}{\sinh n\eta_0} \cos n\psi \right).$$

LHeC

Ring-Ring and Linac-Ring Options CDR issued

Prototype magnets with three different materials for the yoke laminations measured

Inner triplet quadrupoles

Wide Aperture Insertion Quadrupole in Nb-Ti

Presently: beta* = 55 cm, Aperture 70 mm

Phase 1: 40-50 cm, 120 mm

Wide Aperture Insertion Quadrupole in Nb-Ti

EM

European Coordination for Accelerator Research – High field superconducting magnets

Coil field of 13 T, 100 mm aperture

To be used in the Cable Test Facility at CERN Field quality not an issue Accelerator quality magnet?

New ~3.5..4 m shorter Nb₃Sn Dipoles (2 per DS)

Replace an MB with a strong Nb3Sn dipole to accommodate the Cryo-collimator (L \approx 3 m):

→1 x (11.2 T x 10.6 m) magnet, L_{coldmass} ≈ 11 m, (MB -4.2 m)

=> 8 coldmass + 2 spares = 10 CM by 2017

→2 x (11.2 T x 5.3 m) magnets, L_{coldmass} ≈ 11.5 m, (MB -3.7 m)

=> 16 coldmass + 4 spares = 20 CM by 2017

2-in-1 & 1-in-1 Models

 $B_0(11.85 \text{ kA}) = 10.86 \text{ T}$

 $B_0(11.85 \text{ kA}) = 11.21 \text{ T}$

To be measured in 2012. Dynamic effects, quench antenna

Verify the whole chain: Measurements => FiDeL => LSA Address non perfect b3 compensation by MCS corrector

FDI (Fast Digital Integrator, Presentation by L. Fiscarelli) MRU (Micro Rotating Unit) and shaft with 8 turns / second The shaft is currently used for the vertical cryostat and to drive the CLIC rotating shaft

Injector Upgrade and Maintenance

Saturation dependent eddy currents

PS-Booster dipoles at higher field levels

Presentation by R. Chritin

Remark: The calculation of these end-effects are at the forefront of numerical field-computation

PS- Multiturn extraction

Ferrimagnetic Resonance Field-Marker for the PS

Conclusion

- → We have interesting and diverse projects for magnetic field measurements
 - Curved magnets (both NC and SC)
 - Fast ramping (both NC and SC)
 - Small and large apertures
 - Very high field magnets (dynamic effects and quench propagation)
- ➔ Application of diverse and sophisticated measurement techniques
 - Fast rotating probes, fast integrators
 - PCB technology shafts and fluxmeters
 - Software framework for data acquisition
- Hopefully we will have (be given) enough time for the development and testing of these new tools and methods, and for thorough analysis of the magnet performance
 - No need for large series measurements
 - However, not the amount of resources
- → We intend to strengthen the link between simulations and measurements

