Measurement Challenges for the Magnet Projects at CERN

S. Russenschuck for the TE-MSC-MM Section and the Magnet Design Teams at CERN and the collaborating institutes

20.09.2011
Approved Projects and Studies

- CLIC
- Linac4
 - Permanent magnet quadrupoles
 - Axis of RF drift tube
- LHC consolidation
 - Refurbished main dipoles and quadrupoles
 - Exchange of magnets in the next shutdown
- LHC upgrade
 - Wide aperture insertion quadrupoles
 - High field magnets (11 T separation dipole, FRESCA2, HQ)
- MedAustron, Ion-Therapy Project
 - Strongly curved dipole magnets
- LHeC

Small apertures, PCB Coil, Vibrating wire
Flexible Framework for Magnetic Measurements (FFMM)
Quench Antenna
PCB Fluxmeter, Field description for strongly curved magnets
Injectors maintenance and upgrade
- PS (Multi-turn extraction), SPS
- Booster
- Elena
- High Intensity ISOLDE
- Fast Cycling Magnet (FCM) for PS2

Controls and Instrumentation of accelerators
- B-train (Booster, PS, AD, SPS, Leir)
- Fidel and tracking tests

Field computation and analysis of measurements
- Magnetic model of the LHC (FIDeL)

Magnetic measurements on materials

Analysis and controls for compensation of saturation
Strongly curved magnets
Eddy currents, end-effects and hysteresis
Ferrimagnetic Resonance Marker
Fast Rotating Measurement equipment (FAME), Fast Digital Integrator
LINAC4 (Replacing Linac2 as Injector to the PS Booster)

Linac quadrupoles

Fast-pulsed magnets; 0.2 ms rise time:
Hysteresis and power supply stability
Eddy currents
High angular precision in measurement

Arpaia et al., 2010 I2TMC Conference
Limited space in Cell-Coupled Drift-Tube Linac (DTL) modules
Samarium Cobalt permanent magnets
Integrated gradient of 1.3-1.6 Tesla
45 mm aperture, Field quality tuning with iron shims

Axis, geometry, and harmonics measured
(Stretch wire, presentations by J. Garcia-Perez)

Status report by T. Zickler at IPAC 11
CLIC Layout and Damping Ring Wiggler R&D

Collaboration with BNIP and KIT for the installation of complete, conduction cooled unit

First and second field integrals with stretch wire

Short model magnets

\[B_y(z) = B_w \sin \left(\frac{2\pi z}{\lambda_w} \right) \]
Stretch Wire Measurements and the Faraday Paradox
Procurement of one long and two short Main Beam Quad prototypes
Manufacture of a Hybrid Quadrupole for the Final Focus
Procurement of several Drive Beam Quadrupole units
AC current (40 Hz for 2-m-long wire). Phototransistors acquire the amplitudes A_x and A_y of the wire oscillation in x and y directions, which are proportional to the magnetic field components B_x and B_y.

Presentation By C. Petrone
PCB Rotating Coil Array for CLIC Magnetic Measurements

Printed Circuit Board Technology for coil Manufacture with 7.75 mm in diameter

First harmonic measurements

Presentations by O. Dunkel
MedAustron

MedAustron: Centre for ion therapy and research in Wiener Neustadt, Austria

Consists of 3 ion sources, a synchrotron, 4 treatment rooms, incl. a p-Gantry

About 300 magnets of 26

Presentation by T. Zickler

Synchrotron main bending magnet assembly

HEBT quadrupole magnet assembly
Printed Circuit Board (PCB) for Curved Fluxmeter

Presentation by A. Beaumont
ELENA (Extra Low Energy Antiprotons)

Upgrade to the Antiproton Decelerator (AD) to 100 keV (now 5.3 MeV) to serve

Serves several experiments (ASACUSA, ALPHA, AEGIS, PAX)
Eigensolutions in Circular, Elliptic, Bipolar, Cartesian Coordinates

Elliptic: Wide aperture

Cartesian: Wiggler

Bipolar: 2d approximation of curved magnets
What if we Develop the Differential Form?

\[
B_\eta(\eta, \psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(n A_n \sinh n\eta \cos n\psi - n B_n \cosh n\eta \sin n\psi \right)
\]

\[
B_\eta(\eta_0, \psi) = \sum_{n=1}^{\infty} \left(B_n(\eta_0) \sin n\psi + A_n(\eta_0) \cos n\psi \right).
\]

\[
B_\eta = \frac{1}{h_2} \frac{\partial A_z}{\partial \psi} = \frac{1}{a \sqrt{\cosh^2 \eta - \cos^2 \psi}} \frac{\partial A_z}{\partial \psi}
\]

\[
\tilde{B}_\eta = \frac{\partial A_z}{\partial \psi}
\]

\[
B_\eta(\eta, \psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(\tilde{B}_n(\eta_0) \frac{\cosh n\eta}{\cosh n\eta_0} \sin n\psi + \tilde{A}_n(\eta_0) \frac{\sinh n\eta}{\sinh n\eta_0} \cos n\psi \right)
\]
Ring-Ring and Linac-Ring Options
CDR issued

Prototype magnets with three different materials for the yoke laminations measured
Wide Aperture Insertion Quadrupole in Nb-Ti

Presently: $\beta^* = 55$ cm, Aperture 70 mm

Phase 1: 40-50 cm, 120 mm
Wide Aperture Insertion Quadrupole in Nb-Ti

To be measured in vertical cryostat by summer 2012.

Material for large rotating coil ordered.
European Coordination for Accelerator Research – High field superconducting magnets

Coil field of 13 T, 100 mm aperture

To be used in the Cable Test Facility at CERN
Field quality not an issue
Accelerator quality magnet?
LHC Upgrade: 11 T Dispersion Suppressor Dipole

New ~3.5..4 m shorter Nb$_3$Sn Dipoles (2 per DS)

Replace an MB with a strong Nb3Sn dipole to accommodate the Cryo-collimator ($L \approx 3$ m):

\rightarrow 1 x (11.2 T x 10.6 m) magnet, $L_{\text{coldmass}} \approx 11$ m, (MB -4.2 m)
=> 8 coldmass + 2 spares = 10 CM by 2017

\rightarrow 2 x (11.2 T x 5.3 m) magnets, $L_{\text{coldmass}} \approx 11.5$ m, (MB -3.7 m)
=> 16 coldmass + 4 spares = 20 CM by 2017
To be measured in 2012. Dynamic effects, quench antenna

\[B_0(11.85 \text{ kA}) = 10.86 \text{ T} \]

\[B_0(11.85 \text{ kA}) = 11.21 \text{ T} \]
Tracking Test on LHC Main Dipoles

Verify the whole chain: Measurements => FiDeL => LSA
Address non perfect b3 compensation by MCS corrector

FDI (Fast Digital Integrator, Presentation by L. Fiscarelli)
MRU (Micro Rotating Unit) and shaft with 8 turns / second

The shaft is currently used for the vertical cryostat and to drive the CLIC rotating shaft
Resolution on Decay and Snapback Measurements

About 5 Points / second
Injector Upgrade and Maintenance

PS-Booster dipoles at higher field levels

Presentation by R. Chritin

Remark: The calculation of these end-effects are at the forefront of numerical field-computation

Saturation dependent eddy currents

PS- Multturn extraction
Ferrimagnetic Resonance Field-Marker for the PS

Challenge: Marker to work at low and High field, low and high dB/dt

See Presentation by M. Buzio
Conclusion

- We have interesting and diverse projects for magnetic field measurements
 - Curved magnets (both NC and SC)
 - Fast ramping (both NC and SC)
 - Small and large apertures
 - Very high field magnets (dynamic effects and quench propagation)

- Application of diverse and sophisticated measurement techniques
 - Fast rotating probes, fast integrators
 - PCB technology shafts and fluxmeters
 - Software framework for data acquisition

- Hopefully we will have (be given) enough time for the development and testing of these new tools and methods, and for thorough analysis of the magnet performance
 - No need for large series measurements
 - However, not the amount of resources

- We intend to strengthen the link between simulations and measurements