

國家同步輻射研究中心 National Synchrotron Radiation Research Center

# Overall of magnet measurement systems at NSRRC

#### C. S. Hwang, NSRRC, Hsinchu, Taiwan

IMMW 17, Catalonia (Spain) 19 September 2011



# Outline

- Status of 3 GeV TPS project
- Overview of magnet Lab.
- Measurement systems
- Hall probe measurement systems
- Magnetic field calibration system
- Rotating-coil measurement system
- Search-coil measurement system
- Pulse wire system
- Vacuum in-situ field measurement
- 3-D Helmholtz coil system
- Summary



### **Major Milestones of TPS project**

- June 2005 TPS Proposal to Government
- Oct. 2007 Lattice (circ. 518.4m) approved by BOT
- Dec. 2007 TPS final approval by Legislative Yuan
- May 2008 EPA approval; site plan completed
- June 2008 Accelerator Design Book (DRAFT) issued
- Dec. 2008 TPS budget (Civil + Accelerator + BL) lock in
- Dec. 2009
  Contract out of the civil construction
- Feb. 2010 Ground Break
- June 2012 Civil construction completed
- Dec. 2013 Installation completed & commissioning
- 2014 Open to users



### **TPS and TLS at NSRRC site**





# **TPS lattice parameters**

| <b>DBA lattice Circumference C (m)</b>            | 518.4                                    |
|---------------------------------------------------|------------------------------------------|
| Energy E (GeV)                                    | 3.0                                      |
| Natural emittance $\varepsilon_{x0}$ (nm-rad)     | 1.6                                      |
| Straight sections (m)                             | 12(x6) + 7(x18)                          |
| <b>Revolution period (ns)</b>                     | 1729.2                                   |
| <b>Revolution frequency (kHz)</b>                 | 578.30                                   |
| Radiofrequency (MHz)                              | 499.654                                  |
| Harmonic number h                                 | 864                                      |
| Energy loss per turn (dipole) (MeV)               | 0.85269                                  |
| Betatron tune v <sub>x</sub> /v <sub>y</sub>      | 26.18 /13.28                             |
| <b>Momentum compaction</b> $(\alpha_1, \alpha_2)$ | $2.4 \times 10^{-4}, 2.1 \times 10^{-3}$ |
| Natural energy spread $\sigma_E$                  | 8.86×10 <sup>-4</sup>                    |
| Damping partition $J_x/J_y/J_s$                   | 0.9977 / 1.0 / 2.0023                    |
| Damping time $\tau_x/\tau_v/\tau_s$ (ms)          | 12.20 / 12.17 / 6.08                     |
| Natural chromaticity $\xi_x/\xi_y$                | -75 / -26                                |
| <b>Dipole bending radius </b> ρ( <b>m</b> )       | 8.40338                                  |



# Progressive status of TPS construction

# Civil construction of TPS site





#### **Civil construction schedule**







The civil construction has been delayed half year due to the ground issue.



#### **Insertion devices in Phase I**









# Design of Dipole, Quadrupole and Sextupole in SR





#### **Magnet construction**









- BSL fabricates storage ring & booster ring magnets.
- Half part of prototype of Dipole, Quadrupole, and Sextupole are completed.
- Multipole error of SR magnet can be within specification but BR magnet is out of spec.
- Magnet field center will be adjusted by shim block and control within 10  $\mu m.$
- $\bullet$  Most of mechanical precision is within 20  $\mu m.$
- Construction schedule has been delayed half year.



### Layout of Vacuum system

• Two 14 m long vacuum chamber of the whole 24 sectors has been completed. • The aluminum chamber was fabricated and welding in local company & NSRRC. IG3 SGV2 • Construction is on time. IG5 IG6 SGV1 S4 B1 **S**3 50 **BPM1** BPM2 **B**2 BPM4 BPM3 **BPM5 BPM6** TMP3 TMP2 **BPM7** TMP1 TMP6 MP5 IP1 NEG1 TMP4 IP2 NEG2 IP3 NEG3 IP4 NEG5 NEG8 IP5 NEG4 IP6 NEG6 NEG9 NEG10 NEG7



#### Vacuum chamber





#### **Storage Ring Girder System Design**



#### 1/6 ring symmetry section girders configuration





One girder section



#### **Girder construction and alignment**









- Girder is constructed in an automatic alignment system.
- Alignment depend on the PSD with laser system.
- Girder has been mass production in Taiwan and on time delivery.



# Distribution of cryogenic system





#### **Cryogenic system fabrication**



warmer



turbine



Flexible transfer line









#### **Cryogenic system arrived at NSRRC**



Mail oil removal module



Mail compressor



Recovery oil removal module









Components are delivered too early. It is waiting for commissioning

# Selection of RF Cavity - KEKB SRF Module

- installed at
  - KEKB (508 MHz) and
  - BECP-II/IHEP (500 MHz)
- Performance
  - Power handling > 300 kW
  - Q<sub>ext</sub> tunable
  - Highly reliable at high power







#### Successful commissioning of the linac injection system



Cooling plate of RWG phase shifter

• First completed components of the TPS project.





## **Overview of magnet Lab.**

| Measurement<br>system | Measurement<br>dimension                               | Purpose                    | Note                          |
|-----------------------|--------------------------------------------------------|----------------------------|-------------------------------|
| Hall probe            | 6 m                                                    | ID and EPU                 | Pulley driven by DC motor     |
| (bench)               | 5.4 m                                                  | Wiggle, Undulator &<br>EPU | Linear motor with air bearing |
|                       | 1.5 m                                                  | For Lattice magnet         | Soak in LHe                   |
|                       | 0.6 m                                                  | Wiggle, Undulator &<br>EPU | For ID and lattice magnet     |
|                       | 2 m                                                    | For Lattice magnet         | Mechanical precision 20µm     |
| Rotating coil         | 840                                                    | QM and SM-storage ring     |                               |
|                       | 570                                                    | QM and SM-boost ring       |                               |
| NMR                   | 0.043-13.7T                                            | Hall sensor calibration    |                               |
| ESR                   | 0.55-3.2 mT                                            |                            |                               |
| Search coil           | WireOD=0.12mm,<br>30turns<br>Wire OD=0.05mm<br>30turns | Kicker and septum          |                               |
| Stretch wire          | -                                                      | Insertion Devices          |                               |
| Lona loop coil        | 5-axes                                                 | Insertion Devices          |                               |



## **2m-long Hall probe bench**



- Optical scalar is used for distance measurement and was calibrated by laser encoder.
- 2m-long Hall probe aligned with Hall Probe=1.19993T
- NMR=1.19996T

| Specificat<br>-ion | 3-Axis & three angle adjustment<br>Moving rang : 200 * 60* 30 cm<br>Stepping motor |
|--------------------|------------------------------------------------------------------------------------|
| Precision          | Pitch, Yaw, Raw: 0.1 mrad                                                          |
|                    | Z-axis Position: 15 μm                                                             |
|                    | X & Y-axis position:: 10 μm                                                        |
| Purpose            | Dipole : Linear, Curve <sup>(1)</sup>                                              |
|                    | Quadruple : Linear, Circular <sup>(2)</sup>                                        |
|                    | Sextuple : Linear, Circular                                                        |
|                    | Corrector : Linear                                                                 |
|                    | ID : On-fly                                                                        |
| Sensor             | Hall probe with High precision 0.005%                                              |

**C. S. Hwang**, et al., "*High-Precision Harmonic Magnetic-Field Measurement and Analysis Using a Fixed Angle Hall Probe*", Rev. Sci. Instrum., **65(8)**, (1994) 2548-2555.

**C.S. Hwang**, F.Y. Lin, P.K. Tseng, "A PC based real-time Hall probe automatic measurement system for magnetic fields", IEEE Trans. on Instrum. and Meas, Vol. 48, NO. 4, (1999).



# 6m-long Hall probe bench for ID



- Optical sensor for reference point & for limit switch.
- Optical scalar is used for distance measurement that has been calibrated by laser encoder

| Specificati | 6m granite-bench                                |
|-------------|-------------------------------------------------|
| -ons        | 3-Axis 7 two angle adjustment                   |
|             | Moving range : 590*20 * 20                      |
|             | cm                                              |
|             | <b>Optical Linear encoder</b>                   |
|             | Pulley driven by DC motor<br>(only for on-fly)  |
| precision   | Pitch, Yaw, Raw: 0.1 mrad                       |
|             | Z-axis Position: 25 μm                          |
|             | X & Y-axis position:: 10 µm                     |
| Purpose     | Wiggle                                          |
|             | U10 prototype                                   |
|             | EPU prototype                                   |
|             | EPU56                                           |
| Sensor      | One or two Hall probe with high precision 0.01% |

<u>**C. S. Hwang**</u>, et al.,, September," Advance field measuremen method with three orthogonal Hall probe for an Elliptically Polarizing Undulator ", J. Synchrotron Rad. **5**, (1998) 471-474.



#### 5.4m-long Hall probe bench for ID

| <image/>                             | EPU46<br>EPU46<br>5.4m-long bench |  |
|--------------------------------------|-----------------------------------|--|
| Pitch                                | < ±0.15 mrad                      |  |
| Yaw                                  | < ±0.15 mrad                      |  |
| Roll                                 | < ±0.15 mrad                      |  |
| Horizontal and vertical straightness | < ±12.5 μm                        |  |
| Perpendicularity between each axis   | 0.087 mrad                        |  |
| Peak field standard deviation        | 0.23G for Bx, 0.21G for By        |  |



### 1.5m-long Hall probe bench



- Five degree of freedom- three translation and two rotation.
- A HTS superconducting dipole was measured by this system.

# Magnetic field calibration system



 The uniformity of standard magnet ~ 0.5G/6cm (A and B)





NMR probe and/or ESR probe

• Temperature control ~ ±0.25°C

........................

Calibration probe

# Cryogenic field measurement system





## **Cryogenic Hall probe design**





| Storage-ring magnet me | easurement system   | Booster-ring magnet measurement system |                       |  |  |
|------------------------|---------------------|----------------------------------------|-----------------------|--|--|
|                        |                     |                                        |                       |  |  |
|                        | Vertical offset     | Horizontal                             | Normalized multipoles |  |  |
|                        | (mm)                | offset                                 | (*E-4)                |  |  |
|                        |                     | ( <b>mm</b> )                          |                       |  |  |
| reproducibility        | < 0.001             | < 0.001                                | < 0.1                 |  |  |
| reinstall              | < 0.005             | < 0.005                                | n=2, ∆< 0.3           |  |  |
| reproducibility        |                     |                                        | n>2, ∆< 0.1           |  |  |
| n=2 is quadrupole tern | n, n=3 is sextupole | term                                   |                       |  |  |

# **Rotating coil measurement units**



J. C. Jan, C. S. Hwang, J. W. Chen, C. H. Chang, T. C. Fan and F. Y. Lin, "**DESIGN OF A PRECISE UNIT FOR THE ROTATING COIL MEASUREMENT SYSTEM**", Proceedings of PAC07, Albuquerque, New Mexico, USA.

| Parameter           | Nm<br>(turns) | Nb<br>(turns) | r1<br>(mm) | r2<br>(mm) | r3<br>(mm) | r4<br>(mm) | Measurement length<br>(mm) |
|---------------------|---------------|---------------|------------|------------|------------|------------|----------------------------|
| SR-Normal-<br>QM/SM | 3             | -             | 33         | -          | -          | -          | 840                        |
| QM-Bucking          | 150           | 300           | 33         | 17.6       | 28.6       | 13.2       |                            |
| SM-Bucking          | 150           | 300           | 33         | 25.6       | 22.98      | 19.36      |                            |
| BR-Normal-<br>OM/SM | 12            | -             | 16         | -          | -          | -          | 570                        |

# Rotating coil design & fabrication





#### **RCS repeatability testing**



Three factors should be considered if 10 µm precision of field center is required:

- •The temperature of measurement laboratory should be controlled within  $\pm 0.5^{\circ}$ C. •The coil temperature variation also keep within  $\pm 2.5^{\circ}$ C.
- •The high resolution of rotary encoder and the digital leveling meter to decide exact skew quadrupole (in Q-magnet) & sextupole (in S-magnet) components.



#### **Precision of magnet re-installed**



# **RCS repeatability testing after re-assembly**



- Systematic error check & test:
- 1.The magnet was moved everywhere on the longitudinal axis on the bench.
- 2. The magnet was inversed 180°.
- 3.Rotatory encoder with 18000 pulses & a high precision digital angle meter on coil is necessary to have a resolution better than 0.1 mrad.

This precision include the reassembly of RCS system and magnet.





#### **Stretch wire for ID measurement**



Second integral

C. S. Hwang, C.H. Hong, F.Y. Lin and S.L. Yang, "Stretch-wire system for the integral magnetic field measurement", Nucl. Instrum. Meth. A 467 (2001) 194-197



#### Long loop coil for accelerator magnet measurement



**C.S. Hwang**, F.Y. Lin, T. C. Fan, "Integral magnetic field measurement using an automatic fast long-loop-flip coil system", IEEE Trans. on Instrum. and Meas., Vol. **52**, NO. 3, (2003) 865-870.

**C. S. Hwang**, C.H. Hong, F.Y. Lin and S.L. Yang, "Stretch-wire system for the integral magnetic field measurement", *Nucl. Instrum. Meth.* **A 467** (2001) 194-197



## Helmholtz coil system

Automatic measurement for the three magnet dipole moment of permanent  $m_{7}$ magnet.  $m = m_X x + m_y y + m_z z$  $m_{\rm v}$  $\alpha_x = tan^{-1}(\frac{m_x}{m_x})$  $\mathcal{M}_7$ х (a)  $m = \sqrt{m_x^2 + m_y^2 + m_z^2}$  $m_{z}$  $\alpha_y = tan^{-1}(\frac{m_y}{m_z})$  $m_y$  $\sqrt{\theta_{yj,k}}$  $\theta_{xi,k}$  $m_x \cos \theta_{xi,k} + m_y \cos \theta_{yj,k} + m_z \cos \theta_{zk,k}$  $m_{\rm x}$ (b)  $M_k = \vec{m} \cdot \hat{k} = m_x \hat{x} \cdot \hat{k} + m_y \hat{y} \cdot \hat{k} + m_z \hat{z} \cdot \hat{k}$ 



### Helmholtz coil system





**C. S. Hwang**, et al." A Highly Automatic Measurement System for Three-Orthogonal Magnetic Moment of the Permanent Magnet block", Rev. Sci. Instrum. **67(4)**, (1996) 1741-1747.



| Component                 |         | Block dir                            | rection   |                                      |
|---------------------------|---------|--------------------------------------|-----------|--------------------------------------|
| (Unit)                    | (x,y,z) | (- <i>x</i> ,- <i>y</i> , <i>z</i> ) | (x,-y,-z) | (- <i>x</i> , <i>y</i> ,- <i>z</i> ) |
| <i>m</i> <sub>z</sub> (T) | 1.2273  | 1.2272                               | -1.2276   | -1.2277                              |
| <i>m</i> y(T)             | 0.0086  | -0.0090                              | -0.0090   | 0.0087                               |
| $m_{x}(T)$                | 0.0139  | -0.0135                              | 0.0137    | -0.0140                              |

• Replacing the different direction of the magnet on the holder to survey the absolute angle error and the main component deviation of the block magnetic moment of the measurement system.



#### Long-loop coil measurement system for pulse magnet







• Print-circuit board for the wire with various shape to match magnet.



# **Field measurement results**



# Positioning method of Quadrupole & Sextupole



- The positioning precision of this method is within few  $\mu$ m.
- A PSD with laser is used to double check the system position.



# Position shimming method of Quadrupole & Sextupole





#### **Positioning method of SR-DM**



- Two reference plates are for defining the horizontal position and four reference plates are for defining vertical position.
- 45 degree clamper was used to push magnet to touch reference plane and fixed by the torque range tool.
- The positioning precision of this method is also within few  $\mu$ m.



### SR prototype Quadrupole-9

| Mutipoles                       | Spec.           | Measurement (*E-4), ±0.2E-4     |                                 |                                 |                                     |                                   |  |
|---------------------------------|-----------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------|-----------------------------------|--|
| at 180 A<br>Normalized at 25 mm | Bn/B1<br>(*E-4) | 1 <sup>st</sup> Bn/B1<br>(*E-4) | 2 <sup>nd</sup> Bn/B1<br>(*E-4) | 3 <sup>rd</sup> Bn/B1<br>(*E-4) | 1 <sup>st</sup> Normal<br>T/m^(n-1) | 1 <sup>st</sup> Skew<br>T/m^(n-1) |  |
| a2/B1                           | ±3              | -1.298                          | -1.053                          | -0.936                          | -                                   | -                                 |  |
| 0                               | ±4              | 10.3                            | 9.6                             | 9.9                             | 2.996586E-4                         | -1.644090E-4                      |  |
| 1                               | 10000           | 10000                           | 10000                           | 10000                           | -9.459655E+0                        | -3.823846E-2                      |  |
| 2                               | 2               | 1.9                             | 1.6                             | 1.7                             | 5.137301E-2                         | -4.911613E-2                      |  |
| 3                               | 3               | 2.5                             | 2.6                             | 2.6                             | 3.122671E+0                         | 2.184476E+0                       |  |
| 4                               | 1               | 0.4                             | 0.5                             | 0.5                             | 1.627533E+1                         | 2.140293E+1                       |  |
| 5                               | 1               | 0.7                             | 0.7                             | 0.7                             | 1.590206E+3                         | -2.410482E+2                      |  |
| 6                               | 0.1             | 0.1                             | 0.1                             | 0.1                             | -8.719932E+3                        | 1.015964E+4                       |  |
| 7                               | 0.1             | 0.0                             | 0.1                             | 0.1                             | 1.260526E+5                         | -1.315574E+5                      |  |
| 8                               | 0.1             | 0.0                             | 0.0                             | 0.0                             | -3.570981E+6                        | -5.576548E+5                      |  |
| 9                               | 1               | 0.0                             | 0.1                             | 0.0                             | 2.740021E+8                         | -5.932885E+7                      |  |
| 10                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | -1.198612E+9                        | 7.470333E+9                       |  |
| 11                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | -4.699822E+11                       | -9.200139E+10                     |  |
| 12                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | 4.674313E+11                        | 6.325149E+12                      |  |
| 13                              | 1               | 0.0                             | 0.0                             | 0.0                             | -2.947123E+13                       | 8.355250E+13                      |  |
| 14                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | 4.906529E+14                        | -1.218156E+15                     |  |
| 15                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | 2.658651E+17                        | 8.639098E+16                      |  |
| 16                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | -2.870477E+17                       | -4.874336E+18                     |  |
| 17                              | 1               | 0.0                             | 0.0                             | 0.0                             | 3.998351E+17                        | -6.829160E+19                     |  |
| 18                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | -1.401894E+21                       | 8.486373E+20                      |  |
| 19                              | 0.1             | 0.0                             | 0.0                             | 0.0                             | -1.234247E+23                       | -1.880334E+22                     |  |
| Vertical offset (mm)            | 0.010           | 0.014                           | 0.014                           | 0.016                           | -                                   | -                                 |  |
| Horizontal offset               | 0.010           | 0.011                           | 0.010                           | 0.008                           | -                                   | -                                 |  |



### SR prototype Quadrupole-1

| Mutipoles              | Spec.  | Measurement (*E-4), ±0.2E-4 |                       |                       |                        |                      |  |
|------------------------|--------|-----------------------------|-----------------------|-----------------------|------------------------|----------------------|--|
| at 180 A               | Bn/B1  | 1 <sup>st</sup> Bn/B1       | 2 <sup>nd</sup> Bn/B1 | 3 <sup>rd</sup> Bn/B1 | 1 <sup>st</sup> Normal | 1 <sup>st</sup> Skew |  |
| Normalized at 25 mm    | (*E-4) | (*E-4)                      | (* <b>E-4</b> )       | (*E-4)                | T/m^(n-1)              | T/m^(n-1)            |  |
| a2/B1                  | ±3     | -1.816                      | -1.802                | -1.814                | -                      | -                    |  |
| 0                      | ±4     | 19.1                        | 18.7                  | 18.8                  | 3.571710E-4            | -3.402627E-5         |  |
| 1                      | 10000  | 10000                       | 10000                 | 10000                 | -5.244257E+0           | -1.348971E-2         |  |
| 2                      | 2      | 1.8                         | 1.8                   | 1.8                   | -5.866955E-3           | -3.808722E-2         |  |
| 3                      | 3      | 0.3                         | 0.3                   | 0.3                   | 2.264807E-1            | 1.626916E-1          |  |
| 4                      | 1      | 0.3                         | 0.3                   | 0.3                   | 8.390936E+0            | 2.075744E+0          |  |
| 5                      | 1      | 0.4                         | 0.5                   | 0.4                   | 5.647749E+2            | 1.741828E+2          |  |
| 6                      | 0.1    | 0.1                         | 0.1                   | 0.1                   | -4.957759E+3           | -6.833708E+2         |  |
| 7                      | 0.1    | 0.0                         | 0.0                   | 0.0                   | -1.854480E+4           | -7.362824E+4         |  |
| 8                      | 0.1    | 0.0                         | 0.0                   | 0.0                   | 8.744259E+5            | -1.345069E+6         |  |
| 9                      | 1      | 0.1                         | 0.1                   | 0.1                   | 2.753422E+8            | 3.764507E+7          |  |
| 10                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -1.330702E+9           | 3.628597E+8          |  |
| 11                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -1.819496E+10          | -1.718076E+9         |  |
| 12                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | 5.529156E+11           | -1.423449E+11        |  |
| 13                     | 1      | 0.0                         | 0.0                   | 0.0                   | 2.687614E+13           | -3.817813E+12        |  |
| 14                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | 2.631261E+14           | 4.143867E+14         |  |
| 15                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -9.759332E+15          | -2.181725E+16        |  |
| 16                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -2.642545E+17          | 7.471516E+17         |  |
| 17                     | 1      | 0.0                         | 0.0                   | 0.0                   | 1.370692E+17           | -8.421653E+18        |  |
| 18                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -3.280692E+19          | 6.163954E+19         |  |
| 19                     | 0.1    | 0.0                         | 0.0                   | 0.0                   | -1.478186E+22          | -2.184053E+21        |  |
| Vertical offset (mm)   | 0.010  | 0.007                       | 0.008                 | 0.008                 | -                      | -                    |  |
| Horizontal offset (mm) | 0.010  | 0.046                       | 0.046                 | 0.046                 | -                      | -                    |  |

# SR prototype Sextupole-2



| Mutipoles              | Spec.  |                       | Mea                   | surement (*E-4) | , ±0.2E-4              |                      |
|------------------------|--------|-----------------------|-----------------------|-----------------|------------------------|----------------------|
| Normalized at 25 mm    | Bn/B2  | 1 <sup>st</sup> Bn/B2 | 2 <sup>nd</sup> Bn/B2 | 3rd Bn/B2       | 1 <sup>st</sup> Normal | 1 <sup>st</sup> Skew |
|                        | (*E-4) | (* <b>E-4</b> )       | (* <b>E-4</b> )       | (* <b>E-4</b> ) | T/m^(n-1)              | T/m^(n-1)            |
| a1/B2                  |        | -23.25                | -23.32                | -23.13          | -                      | -                    |
| a3/B2                  |        | 1.9                   | 1.9                   | 1.9             |                        |                      |
| 0                      | 5      | 9.5                   | 9.5                   | 9.8             | -3.136285E-5           | -7.786636E-6         |
| 1                      | 8      | 63                    | 62.7                  | 63.7            | -4.147906E-3           | -3.493627E-3         |
| 2                      | 10000  | 10000                 | 10000                 | 10000           | -6.009598E+1           | -5.415864E-1         |
| 3                      | 2      | 2.0                   | 2.0                   | 2.0             | -1.407316E-1           | 4.503019E-1          |
| 4                      | 3      | 2.9                   | 2.9                   | 3.0             | -1.728943E+1           | -2.157091E+1         |
| 5                      | 0.5    | 0.2                   | 0.2                   | 0.2             | 2.648301E+0            | 8.968352E+1          |
| 6                      | 0.5    | 0.4                   | 0.4                   | 0.3             | 2.148019E+3            | 5.144451E+3          |
| 7                      | 0.1    | 0.5                   | 0.4                   | 0.4             | 1.417338E+4            | 2.827699E+5          |
| 8                      | 1      | 0.2                   | 0.2                   | 0.2             | -4.290391E+6           | 2.585182E+5          |
| 9                      | 0.1    | 0.1                   | 0.1                   | 0.1             | -6.433356E+6           | 9.227237E+7          |
| 10                     | 0.1    | 0.1                   | 0.1                   | 0.1             | 2.305557E+9            | 3.838703E+9          |
| 11                     | 0.1    | 0.0                   | 0.0                   | 0.0             | -9.488260E+8           | -7.090756E+9         |
| 12                     | 0.1    | 0.0                   | 0.0                   | 0.0             | -1.184387E+12          | -1.909906E+12        |
| 13                     | 0.1    | 0.0                   | 0.0                   | 0.0             | -7.790049E+12          | 1.894125E+13         |
| 14                     | 1      | 0.1                   | 0.1                   | 0.1             | 6.599919E+15           | 1.305047E+15         |
| 15                     | 0.1    | 0.0                   | 0.0                   | 0.0             | 4.700664E+15           | 1.213193E+16         |
| 16                     | 0.1    | 0.0                   | 0.0                   | 0.0             | -5.175815E+16          | -7.482834E+17        |
| 17                     | 0.1    | 0.0                   | 0.0                   | 0.0             | -2.054579E+18          | 7.672270E+18         |
| 18                     | 0.1    | 0.0                   | 0.0                   | 0.0             | 2.000669E+20           | 6.171257E+20         |
| 19                     | 0.1    | 0.0                   | 0.0                   | 0.0             | 7.112764E+21           | 8.019615E+21         |
| Vertical offset (mm)   | 0.010  | 0.028                 | 0.028                 | 0.029           | -                      | -                    |
| Horizontal offset (mm) | 0.010  | 0.071                 | 0.072                 | 0.073           | -                      | -                    |



#### SR prototype Sextupole-3 (profile error)

| Mutipoles            | Spec.           |                       | <b>Measurement</b> (*E-4), ±0.2E-4 |                       |                        |                      |  |
|----------------------|-----------------|-----------------------|------------------------------------|-----------------------|------------------------|----------------------|--|
| at 150 A             | Bn/B1           | 1 <sup>st</sup> Bn/B1 | 2 <sup>nd</sup> Bn/B1              | 3 <sup>rd</sup> Bn/B1 | 1 <sup>st</sup> Normal | 1 <sup>st</sup> Skew |  |
| Normalized at 25 mm  | (* <b>E-4</b> ) | (* <b>E-4</b> )       | (*E-4)                             | (* <b>E-4</b> )       | T/m^(n-1)              | T/m^(n-1)            |  |
| a1/B2                |                 | -16.9                 | -17.6                              | -17.6                 | -                      | -                    |  |
| a3/B2                |                 | -4.3                  | -4.4                               | -4.5                  |                        |                      |  |
| 0                    | 5               |                       |                                    |                       | -2.163753E-5           | -5.868658E-6         |  |
| 1                    | 8               |                       |                                    |                       | 2.978029E-3            | -2.590860E-3         |  |
| 2                    | 10000           | 10000                 | 10000                              | 10000                 | -6.116219E+1           | -5.983428E-1         |  |
| 3                    | 2               | 4.6                   | 4.6                                | 4.7                   | -2.795541E-1           | -1.052999E+0         |  |
| 4                    | 3               | 4.7                   | 4.6                                | 4.6                   | -4.578662E+1           | -5.008176E+0         |  |
| 5                    | 0.5             | 1.0                   | 0.9                                | 0.9                   | -1.179174E+2           | -3.642117E+2         |  |
| 6                    | 0.5             | 0.7                   | 0.7                                | 0.8                   | -1.040865E+4           | 3.893147E+3          |  |
| 7                    | 0.1             | 0.7                   | 0.7                                | 0.7                   | 3.476476E+5            | -2.902809E+5         |  |
| 8                    | 1               | 0.4                   | 0.4                                | 0.4                   | -1.028134E+7           | -1.354698E+6         |  |
| 9                    | 0.1             | 0.2                   | 0.2                                | 0.2                   | -1.519771E+8           | -1.748291E+8         |  |
| 10                   | 0.1             | 0.1                   | 0.1                                | 0.1                   | 2.922619E+9            | 2.768967E+8          |  |
| 11                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | -6.597758E+9           | -2.560621E+10        |  |
| 12                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | 1.485046E+11           | -8.208480E+11        |  |
| 13                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | 1.737667E+13           | -1.835243E+13        |  |
| 14                   | 1               | 0.1                   | 0.1                                | 0.1                   | 6.207252E+15           | 2.098087E+14         |  |
| 15                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | -1.699607E+16          | -1.760120E+15        |  |
| 16                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | -7.587530E+17          | -1.394927E+17        |  |
| 17                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | 2.516843E+19           | -5.071084E+18        |  |
| 18                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | 5.837298E+20           | 4.616485E+20         |  |
| 19                   | 0.1             | 0.0                   | 0.0                                | 0.0                   | 1.147833E+22           | 1.116455E+21         |  |
| Vertical offset (mm) | 0.010           | 0.021                 | 0.022                              | 0.022                 | -                      | -                    |  |
| Vertical offset (mm) | 0.010           | 0.023                 | 0.023                              | 0.023                 | -                      | -                    |  |



#### BR prototype pure Quadrupole magnet

| Mutipoles             | Spec.           | Measurement (*E-4), ±0.2E-4 |                       |                       |                        |                      |  |  |  |
|-----------------------|-----------------|-----------------------------|-----------------------|-----------------------|------------------------|----------------------|--|--|--|
| at 104 A              | Bn/B1           | 1 <sup>st</sup> Bn/B1       | 2 <sup>nd</sup> Bn/B1 | 3 <sup>rd</sup> Bn/B1 | 1 <sup>st</sup> Normal | 1 <sup>st</sup> Skew |  |  |  |
| Normalized at 15 mm   | (* <b>E-4</b> ) | (*E-4)                      | (* <b>E-4</b> )       | (*E-4)                | T/m^(n-1)              | T/m^(n-1)            |  |  |  |
| b2/b1                 |                 | -0.575                      | -0.525                | -0.530                |                        |                      |  |  |  |
| 0                     | 10              | 15.2                        | 15.2                  | 15.261                | -8.282768E-5           | -5.209089E-5         |  |  |  |
| 1                     | 10000           | 10000                       | 10000                 | 10000                 | 4.291535E+0            | -8.604185E-3         |  |  |  |
| 2                     | 2               | 4.3                         | 4.2                   | 4.1                   | -3.948385E-2           | 1.164597E-1          |  |  |  |
| 3                     | 2               | 2.1                         | 2.1                   | 2.1                   | 1.317052E-1            | -4.072819E+0         |  |  |  |
| 4                     | 1               | 1.1                         | 1.1                   | 1.2                   | 8.494773E+1            | -1.161403E+2         |  |  |  |
| 5                     | 1.5             | 4.5                         | 4.4                   | 4.5                   | -3.823356E+4           | -1.869368E+3         |  |  |  |
| 6                     | 0.1             | 1.0                         | 1.0                   | 1.0                   | -5.528513E+5           | 2.190070E+4          |  |  |  |
| 7                     | 0.1             | 0.8                         | 0.8                   | 0.7                   | -2.860565E+7           | -4.592194E+6         |  |  |  |
| 8                     | 0.1             | 0.4                         | 0.3                   | 0.3                   | -4.889079E+8           | 7.430564E+8          |  |  |  |
| 9                     | 4               | 1.1                         | 1.1                   | 1.1                   | 1.834613E+11           | 3.597940E+10         |  |  |  |
| 10                    | 0.1             | 0.1                         | 0.1                   | 0.0                   | 3.725822E+11           | 5.424058E+11         |  |  |  |
| 11                    | 0.1             | 0.1                         | 0.0                   | 0.1                   | -5.437919E+13          | -2.031411E+13        |  |  |  |
| 12                    | 0.1             | 0.1                         | 0.1                   | 0.1                   | 2.156903E+15           | 2.013668E+15         |  |  |  |
| 13                    | 1.5             | 1.7                         | 1.7                   | 1.6                   | -5.469661E+18          | 2.557826E+17         |  |  |  |
| 14                    | 0.1             | 0.0                         | 0.0                   | 0.1                   | -4.115876E+18          | 5.745330E+18         |  |  |  |
| 15                    | 0.1             | 0.1                         | 0.0                   | 0.0                   | 6.708047E+20           | 7.681672E+20         |  |  |  |
| 16                    | 0.1             | 0.1                         | 0.0                   | 0.0                   | 4.724460E+22           | 1.704108E+22         |  |  |  |
| 17                    | 1.7             | 0.7                         | 0.7                   | 0.7                   | -4.841145E+25          | 9.877609E+22         |  |  |  |
| 18                    | 0.1             | 0.0                         | 0.0                   | 0.0                   | 4.752598E+25           | 1.590276E+26         |  |  |  |
| 19                    | 0.1             | 0.1                         | 0.1                   | 0.0                   | -1.281045E+28          | -9.083549E+27        |  |  |  |
| 20                    | 0.1             | 0.0                         | 0.0                   | 0.0                   | -1.824090E+29          | 7.933266E+29         |  |  |  |
| 21                    | 0.3             | 0.2                         | 0.1                   | 0.2                   | -1.951992E+32          | -1.178698E+32        |  |  |  |
| Vertical offset (mm)  | 0.010           | 0.012                       | 0.012                 | 0.012                 | -                      | -                    |  |  |  |
| Horizontaloffset (mm) | 0.010           | 0.019                       | 0.019                 | 0.019                 | -                      | -                    |  |  |  |

# BR prototype Sextupole magnet

| Mutipoles              | Spec.  | Measurement (*E-4), ±0.2E-4 |                       |                       |                        |                      |  |  |
|------------------------|--------|-----------------------------|-----------------------|-----------------------|------------------------|----------------------|--|--|
| at 7.3 A               | Bn/B1  | 1 <sup>st</sup> Bn/B1       | 2 <sup>nd</sup> Bn/B1 | 3 <sup>rd</sup> Bn/B1 | 1 <sup>st</sup> Normal | 1 <sup>st</sup> Skew |  |  |
| Normalized at 15 mm    | (*E-4) | (*E-4)                      | (* <b>E-4</b> )       | (*E-4)                | T/m^(n-1)              | T/m^(n-1)            |  |  |
| 0                      | 15     | 18.5                        | 18.8                  |                       | 3.836347E-6            | 7.407058E-6          |  |  |
| 1                      | 20     |                             |                       |                       | -4.487201E-4           | 9.340750E-3          |  |  |
| 2                      | 10000  | 10000                       | 10000                 |                       | 2.000387E+1            | 2.971728E-1          |  |  |
| 3                      | 2      | 9.5                         | 9.6                   |                       | -1.209543E+0           | 3.848630E-1          |  |  |
| 4                      | 1      | 7.1                         | 6.9                   |                       | 5.740646E+1            | -2.546079E+1         |  |  |
| 5                      | 0.1    | 0.7                         | 0.8                   |                       | -2.185156E+2           | 3.746713E+2          |  |  |
| 6                      | 0.1    | 0.8                         | 1.0                   |                       | 2.937958E+4            | 1.236416E+4          |  |  |
| 7                      | 0.1    | 2.5                         | 2.5                   |                       | 4.632514E+6            | -4.743206E+6         |  |  |
| 8                      | 5      | 12.4                        | 12.3                  |                       | -2.179059E+9           | -7.225766E+7         |  |  |
| 9                      | 0.1    | 0.7                         | 0.7                   |                       | -7.496574E+9           | -2.191975E+9         |  |  |
| 10                     | 0.1    | 1.3                         | 1.2                   |                       | -5.266996E+11          | 8.314161E+11         |  |  |
| 11                     | 0.1    | 0.3                         | 0.4                   |                       | 9.695191E+12           | 1.004291E+13         |  |  |
| 12                     | 0.1    | 0.6                         | 0.5                   |                       | 1.669382E+15           | -1.018460E+15        |  |  |
| 13                     | 0.1    | 1.5                         | 1.5                   |                       | 4.201977E+16           | -3.442069E+17        |  |  |
| 14                     | 6      | 5.8                         | 5.8                   |                       | -8.870901E+19          | -5.013780E+18        |  |  |
| 15                     | 0.1    | 0.1                         | 0.2                   |                       | 1.502377E+19           | -7.083296E+19        |  |  |
| 16                     | 0.1    | 0.2                         | 0.1                   |                       | 1.464512E+22           | -7.027373E+21        |  |  |
| 17                     | 0.1    | 0.1                         | 0.1                   |                       | -6.007293E+23          | -2.735263E+23        |  |  |
| 18                     | 0.1    | 0.1                         | 0.1                   |                       | -2.909266E+25          | 8.263152E+24         |  |  |
| 19                     | 0.1    | 0.0                         | 0.1                   |                       | 6.278958E+26           | 2.891611E+26         |  |  |
| 20                     | 1      | 0.1                         | 0.2                   |                       | -3.903250E+28          | -1.708578E+29        |  |  |
| 21                     | 0.1    | 0.1                         | 0.1                   |                       | -8.758961E+30          | -5.154087E+30        |  |  |
| Vertical offset (mm)   | 0.010  | 0.233                       | 0.233                 |                       | -                      | -                    |  |  |
| Horizontal offset (mm) | 0.010  | 0.011                       | 0.010                 |                       | -                      | -                    |  |  |

#### Multipoles distribution of Q-magnet along Z-axis

BSL-Q1 and Q10-Normal term



#### Multipoles distribution of Q-magnet along Z-axis

NSRRC



• Exact Skew quadrupole term can be obtained after the angle calibration of Hall prob<sup>24</sup>.

#### In-situ magnetic field measurement system (IMMS)

- Purpose : Check magnetic performance of in-vacuum undulators
- Design goals :
  - Measure the magnetic field inside the vacuum chamber without contaminating the chamber.
  - The accuracy of Hall probe positions in transverse and vertical axes are less than 30  $\mu m.$
  - The measurement time of 3m undulator is less than 10 minutes.
- Two major parts : Optical positioning system, Hall probe transferring system.
- Status : All components are almost getting ready, and we are assembling them now.
- Future work : Control program development, measurement data analysis software development, undulator prototype magnetic field measurement.





• Function : Detect the position of Hall probe and feed back to transferring system.







#### **IMMS Position & control system**



• This system is just under development. It will be finished before the end of this year and test in the in-vacuum undulator in next year..





# A comparison between Pulse wire and Hall probe measurement





# 2<sup>nd</sup> integral field by pulse wire



• There are some issues need to be improved for the ID measurement. So we just use the Hall probe to measure the ID. But it can be used to determine the field center of the quadrupole and sextupole magnet precisely.



### Summary

#### Lattice magnet

- Moving fixed angle Hall probe system => point-by-point for any type magnet
- Rotating coil system => global measurement for multipole magnets
- Stretch wire system => simple mechanism for quick double check
- Insertion device magnet
  - Three-orthogonal Hall probe system => helical field for phase shimming
  - Highly automatic Helmholtz system => magnet block sorting
  - Pulse-wire system (not yet mature) => mini-gap undulator
  - Stretch wire system => fast multipole shimming
- 3D-Hall probes issues
  - Position & angle calibration on a reference magnet should be done
  - The planar Hall effect and probe temperature should be compensated
  - Field calibration should consider the orthogonal between three Hall probe
- Wire measurement system
  - The wire length for the harmonic components measurement should be within 1 m long for Cu wire and 2 m long for Be-Cu wire to keep high precision of 0.01%
  - Use the Litz wire to enhance the resolution and accuracy
  - Print-circuit board as wire is good for rotating coil



# Thanks for your attention