Broad and Narrow Band Feedback Systems at ELSA

Manuel Schedler

16th ESLS RF Meeting ALBA

October, 10th 2012

Contents

The ELSA Accelerator Facility

Limiting Factors of High Beam Currents

Multi Bunch Feedback System

Feedback on Fast Energy Ramp

Narrow Band Feedback System

Outlook

The ELSA Accelerator Facility

Limiting Factors of High Beam Currents

multi bunch instabilities mainly dominated by HOMs of the two 5-cell PETRA-cavities and resistive wall effects

Longitudinal Beam Spectrum

Longitudinal Mode Spectrum

Multi Bunch Feedback System

Multi Bunch Feedback System

- ▶ signal processing using FPGAs manufactured by dimtel[®]
- in-house development of longitudinal and transverse kickers

Transverse Stripline Kicker

- coaxial design
- ▶ 250 MHz bandwidth

Electric Field Distribution of the Stripline Kicker

CST

Longitudinal Kicker Cavity

- ▶ $\nu_{\text{res}} = 1.125 \,\text{GHz}$
- $Q_L = 4.5 \rightarrow \Delta \nu > 250 \,\mathrm{MHz}$
- $\blacktriangleright R_{\mathsf{S}} = 440\,\Omega$

Fast Energy Ramp in Booster Mode

horizontal beam spectrum with tune correction

longitudinal beam spectrum with tune correction

Narrow Band Feedback System

$$\begin{split} \nu_{\rm center} &= 1.46\,{\rm GHz}\\ Q &\approx 2\times 10^4 \end{split}$$

Outlook

Optimization of vacuum chambers to reduce wake impedances

bypass ceramic insulations in every dipol chamber $\approx 1\,M\Omega$

Outlook

- New digital LLRF system for PETRA cavities (dimtel)
- HOM couplers in the wave guides

▶ Optimization of the accelerator for high beam currents $(20 \text{ mA} \rightarrow 250 \text{ mA})$

Thank you for your attention.