Experience with prototype of a 1.3 GHz IOT for CW Studies

Ruediger Onken, DESY

Experience with 1.3 GHz IOT prototype for CW Studies Barcelona, October/ 9th /2012

Outline

- 1) Motivation
- 2) Specifications
- 3) First test
- 4) First breakdown
- 5) Second test
- 6) Modifications
- 7) Further investigations

XFEL facilities offer unique combination of the coherent photon beam properties:

- High peak brightness
- Short photon bursts (<100 fs)</p>
- Short wave length (≤ 1 Å)

But their extremely low **Duty Factors** limit **flexibility in the time structure of photon beams**

Motivation

- FLASH / XFEL Klystron are not designed for CW operation
- > CW as upgrade option
- > Separate RF- system !?!
- Has to fit into the tunnel
- > CW or long pulse mode are limited by HOMs cryoload

Preliminary Specifications:

Parameters	Unit	Minimum	Nominal	Maximum	
Frequency	[GHz]		1.3		
Output Power	[kW]		120*		* F
3dB- Bandwidth	[MHz]	8	10	15	one
Power Gain	[dB]	21	22		
Efficiency	[%]	60	65		
Beam Voltage	[kV]		46	50	
Beam Current	[A]	3.5	3.9	4.5	
RF- Drive	[W]		600	800	
Grid Bias	[V]	-50	-100	-150	

For Prototype 60 kW hould be reached

- Feb./2007: Ordering the prototype IOT (grid & cathode are standard components » minimum output power = 60 kW)
- Jun./2008: IOT shipped to DESY
- Jun./2008 to Dec./2009: Building test stand in DORIS- RF hall
- 2010 First test and modifications on hardware

First test in DORIS transmitter hall

HV- installations

Heater & Grid supply

Control cabinets

DESY 1.3 GHz, 60-120 kW IOT Prototype Tube Test Performance

SERIAL NO.001R1	CPI Sep.2009	CPI Sep.2009	DESY @DORIS-NR Jan.2010	
Drive Power	474 W	300 W	440 W (*)	* max. available Drive Power
Beam Voltage	48 kV	48 kV	48 kV	
Beam Current	3.44 A	3.0 A	2.83 A	
Beam Power	165 kW	144 kW	136 kW	
Output Power (Meter via Dir.Cplr.)	85.3 kW	65.1 kW	60.3 kW	
Output Power (Calorimetric via Water)	85.1 kW	64.7 kW	57.2 kW	
Gain	22.5 dB	22.1 dB	22.1 dB	
Efficiency	51.5 %	44.9 %	42.1 %	

DESY

Rüdiger Onken | Experience with prototype of a 1.3 GHz IOT for CW Studies | Barcelona, October, 9th 2012 | Page 6 of 13

Moving to CMTB (Cryo Module Test Bench)

Racks

Match Line and Connection-box

- Jan./2011to Jun./2011: Moving to CMTB with more compact infrastructure
- Jun./2011 to Sep./2011: Test operation on Flash/XFEL Test Module or on load ٠

Test module (with 8 cavities) Rüdiger Onken | Experience with prototype of a 1.3 GHz IOT for CW Studies | Barcelona, October, 9th 2012 | Page 7 of 13

First breakdown

September 2011:

- •2nd High power test after TTF- module testing
 •No high voltage possible
- •Sparking through insulating ceramics
- •CPI knows this as a "weak point of design" and has spare part
- •Whole connection box sent to CPI

Rüdiger Onken | Experience with prototype of a 1.3 GHz IOT for CW Studies | Barcelona, October, 9th 2012 | Page 8 of 13

Second test

March 2012:

- >After replacing ceramics only unstable operation possible
- Input circuit sensitive to mechanical forces
- >Input circuit was mismatched
- >Only 12 kW output power was "stable" possible
- Module tests with 12 kW (LLRF studies)

Modifications (1st part)

August 2012:

- >Tighten the "Match Line" (even if bad matched)
- >Matching the driver with slugs and Tee's

(to get more power to the grid)

>Match / Mismatch output ("Sliding wart waveguide")

Rüdiger Onken | Experience with prototype of a 1.3 GHz IO1 for CW Studies | Barcelona, October, 9th 2012 | Page 10 of 13

Modifications (1st part)

Modifications / Investigations (Future)

What are the next steps for this IOT:

- >Miram check (under-heating curve)
- >Tuning the "Match Line" during operation

Timeline of IOT

- > First ideas on 2005
- > Mar./2006: Design proposal
- Feb./2007: Ordering the prototype IOT (grid & cathode are standard components » minimum output power = 60 kW
- > Jun./2008: IOT shipped to DESY
- > Jun./2008 to Dec./2009: Building test stand in DORIS- RF hall
- > 2010 First test and modifications on hardware
- > Jan./2011to Jun./2011: Moving to CMTB with more compact infrastructure
- > Jun./2011 to Sep./2011: Test operation on cavities
- > Sep./2011: broken ceramic » shipped to CPI
- Sep./2011: ordering 2nd Prototype (new cathode- and grid- design) » minimum output power = 85 kW
- > Mar./2012: Operating reassembled IOT » not stable
- > Aug./2012: Playing on output matching
- >

