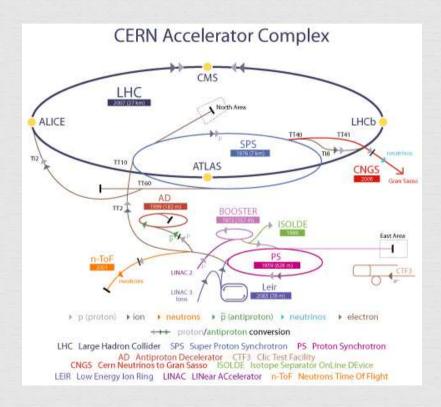
CERN SPS 800 MHz IOT Progress report


16th ESLS RF Meeting, 9-10 October 2012, ALBA, Barcelona, Spain

800 MHz RF in the SPS

CB

- SPS is the latest Injector for LHC
- The proton beams for the LHC can become unstable in the SPS
- One of the most important systems to keep beams stable is the 800 MHz RF system
- The RF power source must be of the highest reliability to ensure beams for LHC at all times

800 MHz system

- Since 1980, the system is composed of :
- 8 x 56 kW Valvo klystrons
- Klystrons are combined using 3 dB hybrids
- 2 transmitters of 225 kW each
- ≅ Each transmitter connected via ~ 120 m waveguides to 2 Travelling Wave Cavities

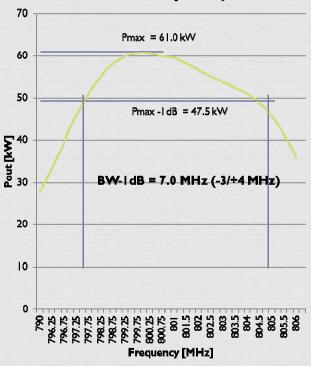
Obsolescence of the system

- This RF power system is getting very old
- We had major difficulties with klystron ceramic failures and with HV transformers
- We now operate with 2 klystrons only feeding one cavity and 2 hot spare klystrons
- The second cavity is unavailable

Upgrade proposal

CB

- Replace Klystron
 Transmitters with IOT
 Transmitters and re-use
 all existing ancillaries
- Maximum power will be slightly increased up to 240 kW CW
- BW_{-1dB} will be increased:
 1.0 MHz with Klystrons
 6.0 MHz with IOTs

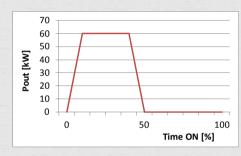


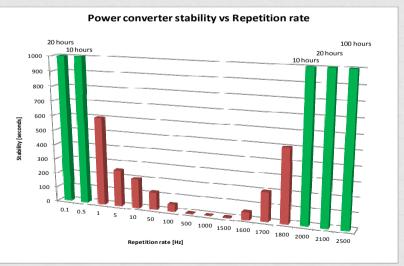
Factory Acceptance Tests

CB

- All factory acceptance tests have shown compliance respect to the specification, and even better:
 - **S** Linearity
 - **Monotonous**
 - **9** Phase stability
 - Maximum output power
- Pre-series Amplifier has been integrated within CERN operational area
- All tests cycles have been done for 4 hours each, no trouble has been discovered

Pout vs frequency




HVPMPS instabilities

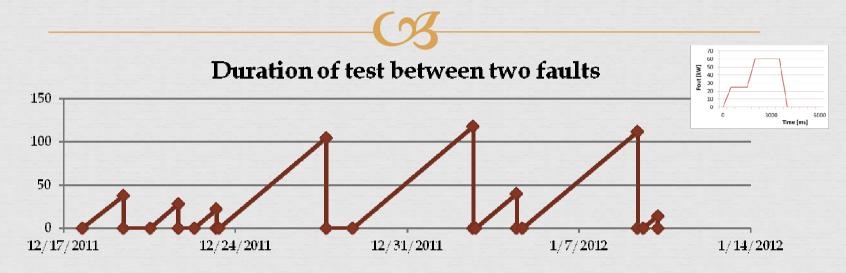
CB

We tried a 50% AM RF signal, varying repetition rate

HVPMPS stability was function of the repetition rate!

New Rectifier

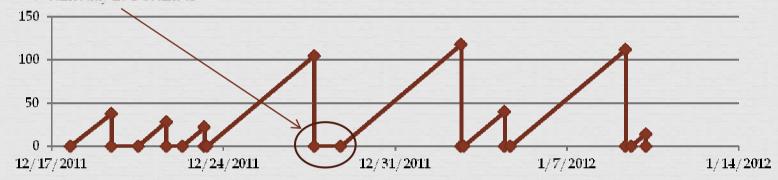
- We asked for a 'simple' rectifier:
 Transformer


 - O Diode Rectifier

 - Capacitor stack
 Thyratron (stored energy in capacitors)
- Tests have been performed at CERN in October:

 - Crowbar ssytem was unstable
 Repetitive triggers without any
 reason (even without the tube)
- Additional tests in Factory were needed to fix the trouble
- December, the system was ready again for long duration tests at CERN

Unstable during Christmas


- ™ We launched a long duration test during our 2011 CERN Christmas stop:
 - No other users -> Mains Network more stable
 - Mobody at CERN for two weeks, perfect time for long duration tests
- Goal was to perform 360 hours without any stop due to a fault : Maximum achieved between two faults : 117 hours

 - Still unstable!

Unstable during Christmas

Tuesday 27 December Wednesday 28 December Duration of test between two faults

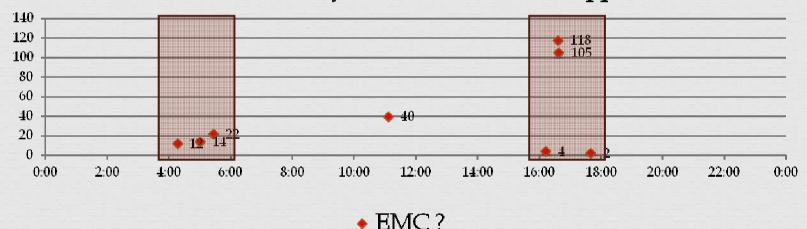
- ™ We launched a long duration test during our 2011 CERN Christmas stop:
 - No other users -> Mains Network more stable
 - Mobody at CERN for two weeks, perfect time for long duration tests
- Goal was to perform 360 hours without any stop due to a fault : Maximum achieved between two faults : 117 hours

 - Still unstable!

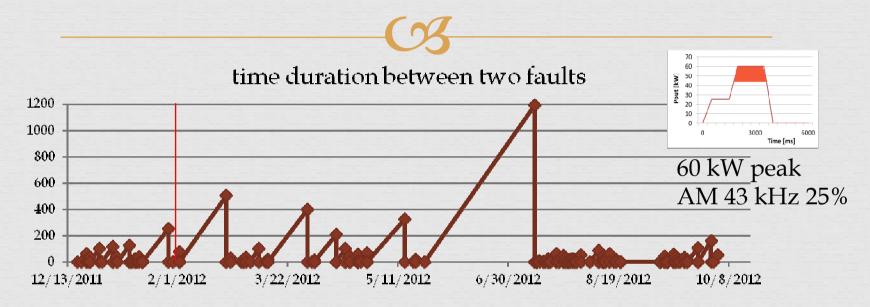
'Unstable time slots'

CB

Time of the day when Transmitter stopped



Recided to look differently at the data

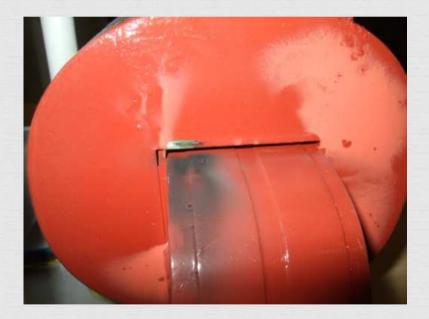

'Unstable time slots'

03

Time of the day when Transmitter stopped



- Recided to look differently at the data
- From 4 to 6, AM and PM, our transmitter was unstable


time duration between two faults

March & May: HV Thyratron monitoring transformer burnt

Faulty HV monitoring transformer

- A first HV Thyratron monitoring transformer burnt in March
- In May, we received a new designed transformer
 - **3** Better HV insulation
 - **Better** cooling
 - on more troubles with it

time duration between two faults

From 23 May to 28 June: Not a single event!

time duration (EMC + faults only, CERN cumulative)

From 23 May to 28 June: Not a single event!

28 June: Contract signed for Series production

03

time duration between two faults

- - □ Driver Controls (few trips)

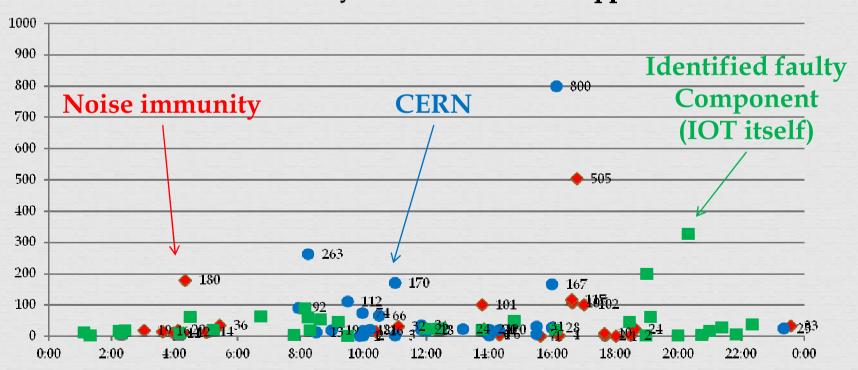
CB

time duration between two faults

- - 'Gun ceramic has been contaminated by evaporation of material due to some arcs at a time'
 - All inspected characteristics are within specifications

03

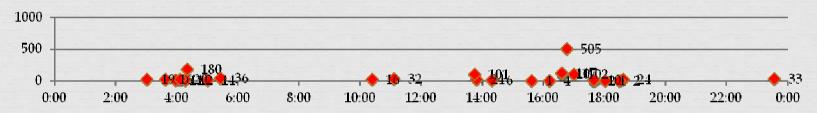
time duration between two faults

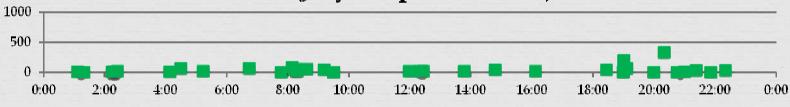


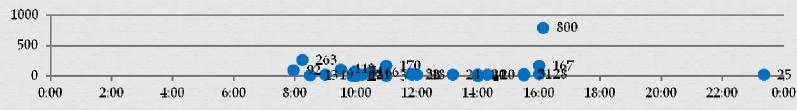
- Since beginning of September
 - Reduced peak power to 40 kW, still AM 43 kHz 25%
 - average of 48 hours between two faults, always an IOT crowbar, Improving
 - In addition, we implemented an Automatic Restart

December 2011 to September 2012

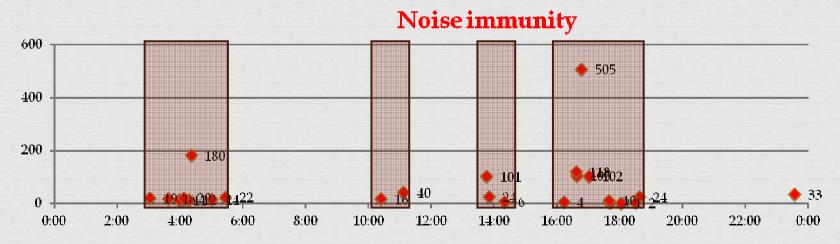
CB


Time of the day when Transmitter stopped

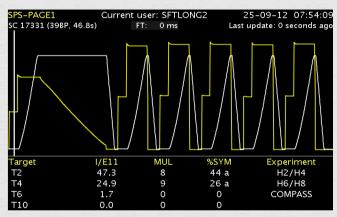

Identification of faults

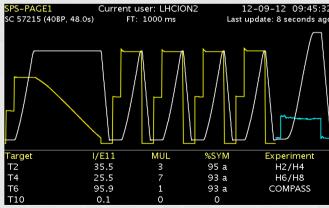

Noise immunity (December 2011 - July 2012)

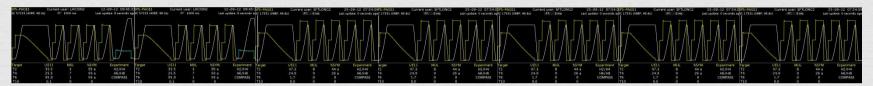
IOT (July - September 2012)


CERN

Noise sensitivity



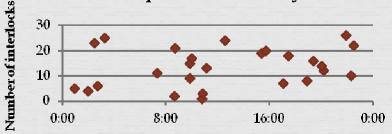

- What can be seen: Faults mainly occur always the same time windows
 - Cannot be the IOT tube itself (it has no internal clock to make our life hardier!)
 - Must be a lack of noise immunity in controls of the transmitter


SPS supercycles

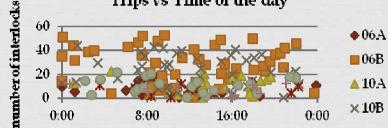
- SPS operates with Supercycles
- Supercycles are repeated every ~ 48 seconds
- We inject to LHC during 20 minutes every 4 hours
- During these 20 minutes we have one 8.5 seconds injection to LHC per Supercycle

SPS supercycles

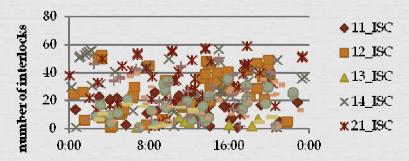
- We now have one trip per 48 hours with 1 x IOT
- Requipment self restarts within less than 120 seconds
- With 8 x IOTs in operation, statistically we will loose: 3 x Supercycles every 6 hours


 - Worst case: 3 / 24 LHC Superscycles: really bad!
- Must be improved regarding SPS operation with 100 tetrodes of our main accelerating system We loose 2 / 1800 Supercyles

Other Laboratories

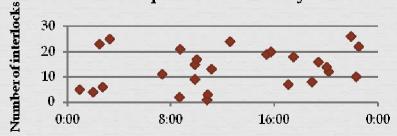

03

and TED tubes, all other laboratories have better statistics than we have

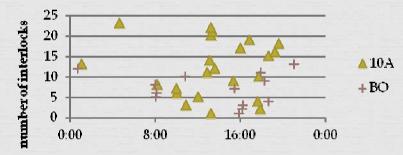

Elettra (Cristina & team) Trips vs Time of the day

ALBA (Francis & team) Trips vs Time of the day

Diamond (Morten & team) Trip vs Time of the day

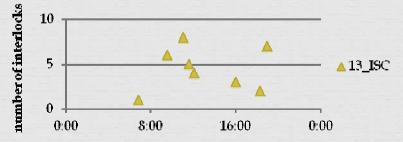


Other Laboratories


03

and TED tubes, all other laboratories have better statistics than we have

Elettra (Cristina & team) Trips vs Time of the day



ALBA (Francis & team) Trips vs Time of the day

Diamond (Morten & team)

Trips vs Time of the day

Conclusion 1/3

- - 'In house' controls, in order to minimize EMC sensitivity (or to be able to measure it...)
- Operation of our first IOT TH793 (#640963):
 - 3 10'150 hours with HV applied
 - **W**e already have 2 new **TH795** (#724074 #725776)
 - How destructive have been HVPMPS, EMC and CERN maintenance and unwanted trips?
 - Should we have to replace our IOT to be stable again?

Conclusion 2/3

- Series delivery is scheduled for the last amplifier at CERN by end of September 2013 the latest
- We expect to have 8 transmitters in operation by October 2013, and to accumulate data until June 2014 before SPS restarts after our Long Shut-Down

Conclusion 3/3

- many thanks to ALBA, Diamond, Elettra, for their statistics
- These results from other labs using IOTs are very encouraging as having better statistics then us
- How and which data to collect to be of interest for all IOTs community?

Thank you very much for your attention