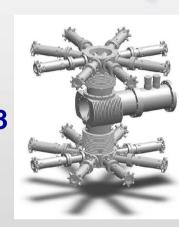

European Synchrotron Radiation Facility

16th ESLS RF Meeting 2012 ALBA, 9th – 10th October

1st Experience with SSAs and New Cavities at the ESRF

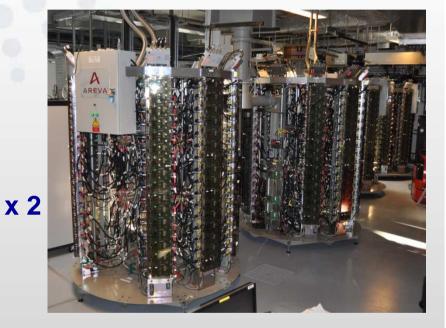
Jörn Jacob J.-M. Mercier V. Serrière M. Langlois G. Gautier

150 kW RF SSA at 352.2 MHz


- Initially developed by SOLEIL
- Transfer of technology to ELTA / AREVA

х 128

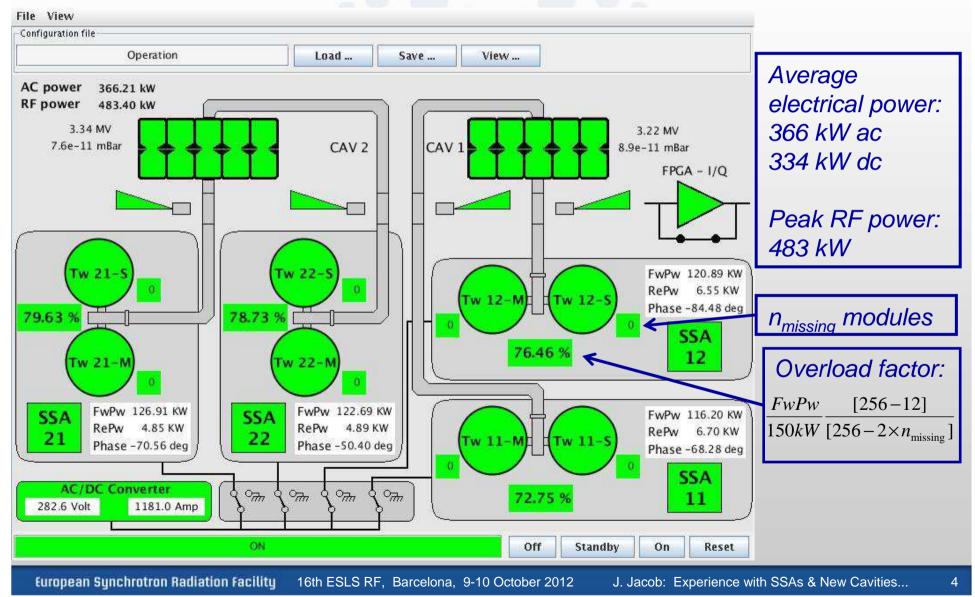
Pair of push-pull transistors


650 W RF module

≻6th generation LDMOSFET (BLF 578 / NXP), V_{ds} = 50 V≻Efficiency: 68 to 70 %

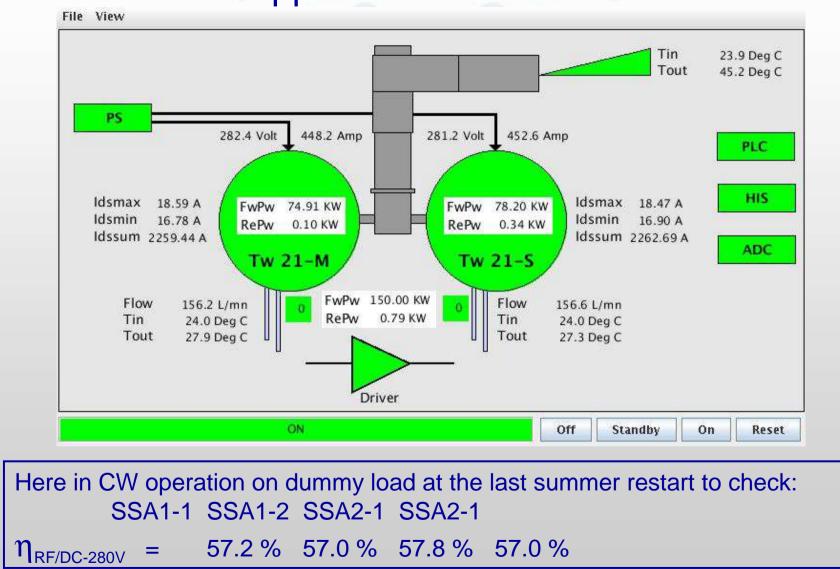
75 kW Coaxial combiner tree

with $\lambda/4$ transformers

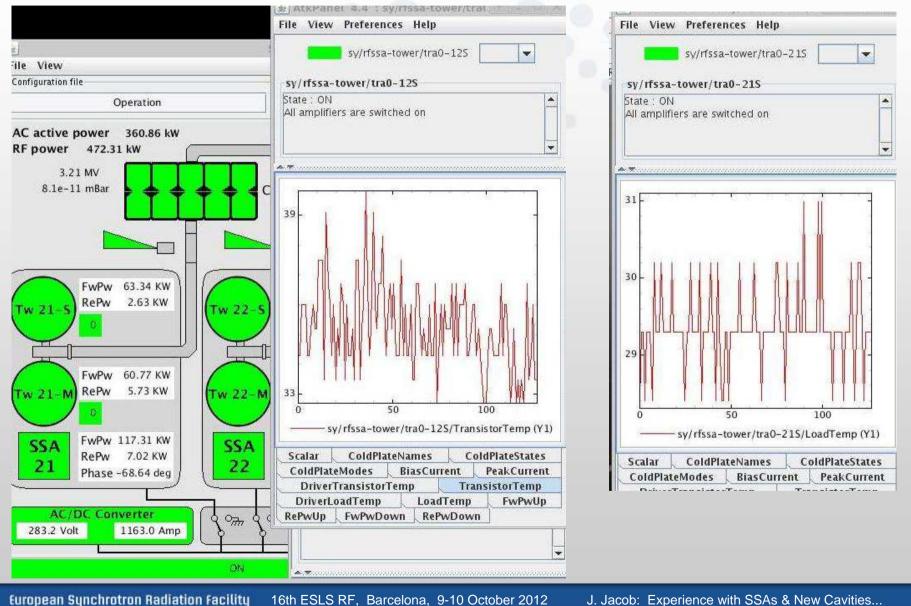


150 kW - 352.2 MHz Solid State Amplifiers for the ESRF booster

Efficiency: > 55 % at nominal power



Main application of the booster transmitter


Application of SSA-21

6

Example: monitoring transistor and load temperatures

Failures after first 500 hours of operation – from RF logbook

Date	Run hour	Machine Stop ?	SSA #	Position	Domain	Failure Description	Corrective Action
25-Mar-12	156	no	1-1	TM7	Cooling	Flowmeter remains interlocked despite the water flow is correct	Shaking the flow meter allows to reset
23-Apr-12	172	yes	1-1	TM7	Cooling	Flowmeter remains interlocked despite the water flow is correct	The flowmeter is swapped with the one of TM3 (wait and see)
23-Apr-12	172	no	1-2	TS5	Combiner 8	Power unbalance between both half PADA (Youth problem)	Replacement of combiner 8
26-Apr-12	173	no	2-1	TS2/12	DC/DC Converter	Fuse F1 (10A) blown without any apparent reason	Replacement of the fuse
26-Apr-12	173	yes	2-1	ТМ	Pre-driver	Impossible to reset pre-driver interlock (Youth problem)	Disconnect and reconnect J1 (PS)
22-May-12	180	no	1-1	TM7/10	MUXBOX	HPA detected OFF when the current was correct (Youth problem)	Bad connection of the I2C connector (DB9)
5-Jul-12	306	no	2-2	TS4/14	HPA Transistor	HPA failure detected by RF control application - Low current (HPA 11.0909)	Replacement of the HPA (report SYRF/2012-001)
17-Jul-12	330	no	1-1	TM3	Cooling	Flowmeter remains interlocked despite the water flow is correct	Strap (Report SYRF/2012-002)
30-Aug-12	374	no	2-2	TM6/14	DC/DC Converter	HPA failure detected by RF control application - Bias current always at 2.5A	Replacement of the DC/DC converter (Report SYRF/2012-003)
22-Sep-12	467	no	1-1	ТМ3	MUXBOX	Fuse 4A blown - Blows again when replacing it	Replacement of the MUXBOX
23-Sep-12	468	no	1-1	TS9	MUXBOX	Fuse 4A blown	Replacement of the fuse OK
European Synchrotron Radiation Facility			16th ESLS RF, Barcelona, 9-10 October 2012 J. Jacob: Experience with SSAs & New Cavities 7				

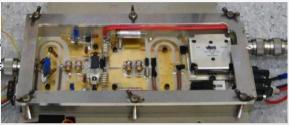
Bad surprise at acceptance test of 1st SSA

ESRF Specification:

- a) 50 kW reflection all phases for 150 kW: OK
- b) Up to 6 RF modules OFF without performance degradation:

But:

- \succ a) and b) at the same time \rightarrow Arcing at output of passive modules!
- > Up to 1500 W to 1700 W measured on the circulator loads of passive modu
- > Destruction of load circuit, arcing propagating along cable towards combine


Solutions for batch 1 on the booster:

> Booster in pulsed operation \rightarrow no overheating OK

Solutions for batch 2 for the storage ring:

- 1. 150 kW power circulator at SSA output not retained by ELTA
- 2. Replace 800 W loads by 1200 W loads (also for booster spares) retained by ELTA (Power tests of Circulator and 1200 W loads are scheduled by ELTA very soon)
- 1. Optimum phase between 6kW and 50 kW Combiners retained by ELTA (proposed by P. Marchand's team at SOLEIL and simulated by ELTA with AWR & CST for electrical length optimization)
- 4. Additional interlock: P_{reverse} < 3.5 kW at output of 1st x8-combiner retained by ELTA

\Rightarrow Delivery of batch 2 delayed by 1 to 1.5 years

OK

Mismatch of unpowered modules: over-load of individual circulator loads

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_N \\ b_{N+1} \end{bmatrix} = \begin{bmatrix} (1-N)/N & 1/N & 1/N & \dots & 1/N & 1/\sqrt{N} \\ 1/N & (1-N)/N & 1/N & \dots & 1/N & 1/\sqrt{N} \\ 1/N & 1/N & (1-N)/N & \dots & 1/N & 1/\sqrt{N} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1/N & 1/N & 1/N & \dots & (1-N)/N & 1/\sqrt{N} \\ 1/\sqrt{N} & 1/\sqrt{N} & 1/\sqrt{N} & \dots & 1/\sqrt{N} & 0 \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \dots \\ a_N \\ a_{N+1} \end{bmatrix}$$

Simplified S-matrix of an ideal "x N" combiner

𝔅 λ/4 coaxial combiner: some phase factors and different S_{ij} , i≠ j ε [1...N] 𝔅 however, similar conclusions as sketched here below

Input arms: strongly mismatched but,

$$\forall i, j \le N, a_i = a_j \implies b_i = b_j = 0 \text{ and } b_{N+1} = \sqrt{N} \times a_i$$

If one input arm i is unpowered:

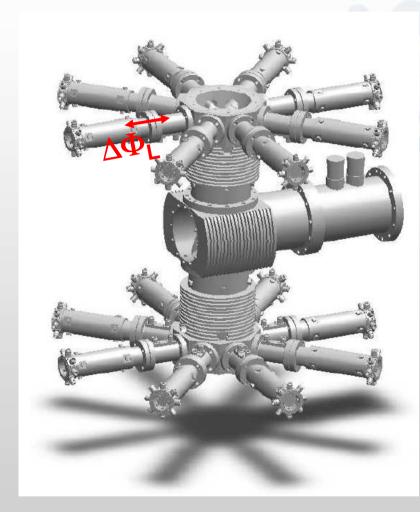
$$a_i = 0 \implies b_i = \frac{N-1}{N} \times a_j , \quad j \neq i$$

Under worst phase conditions, for any output reflection of, say, 1/3 in power, the unpowered input arm i will receive

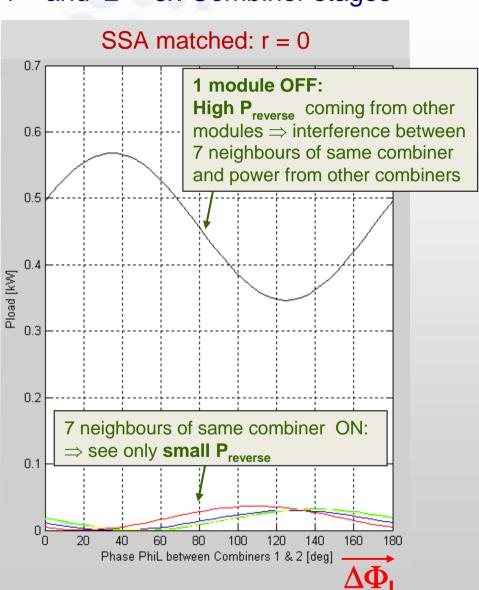
$$|b_i| = \left\{\frac{N-1}{N} + \frac{1}{\sqrt{3}}\right\} |a_i|$$

European Synchrotron Radiation Facility 16th ESLS RF, Barcelona, 9-10 October 2012

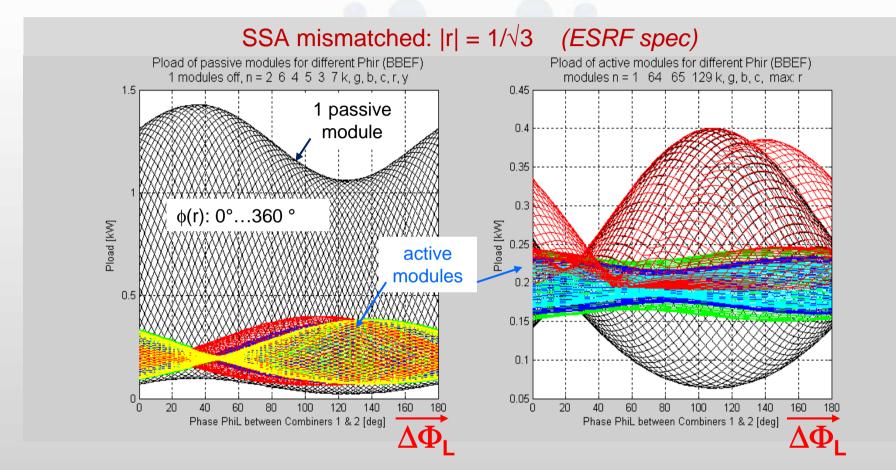
input arms: $a_1...a_N$, $b_1...b_N$, output arm: a_{N+1} , b_{N+1}


Example 1: x8 combiner, $|\mathbf{a}_i|^2 = 650 \text{ W}$, no losses

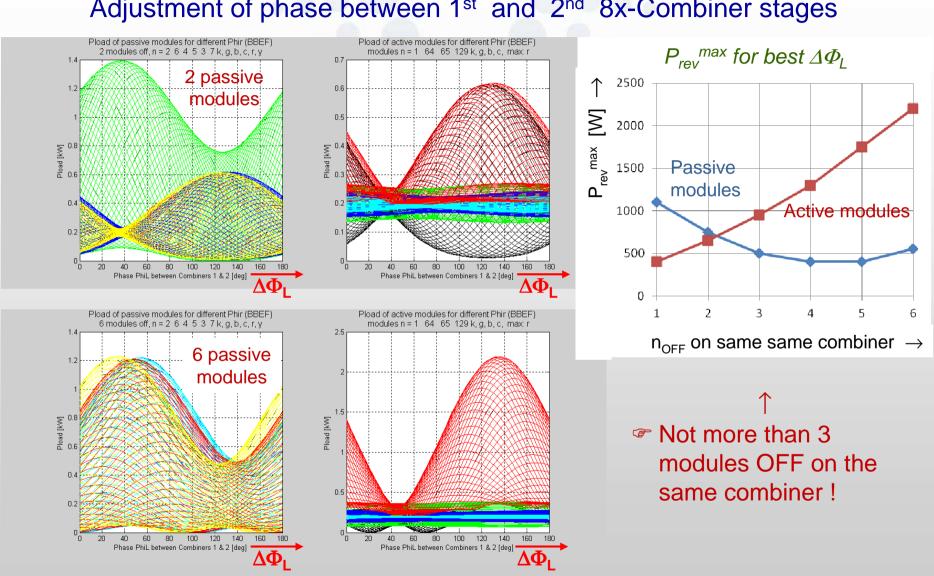
 $b_i = 0$: difference of large numbers $|b_{N+1}|^2 = 8 \times 650 \text{ W} = 5.2 \text{ kW}$


 $|b_i|^2 = (7/8)^2 \times 650 \text{ W} = 498 \text{ W}$ $\Rightarrow 645 \text{ W} \text{ for } SSA = x256 \text{ combiner}$

Adjustment of phase between 1st and 2nd 8x-Combiner stages

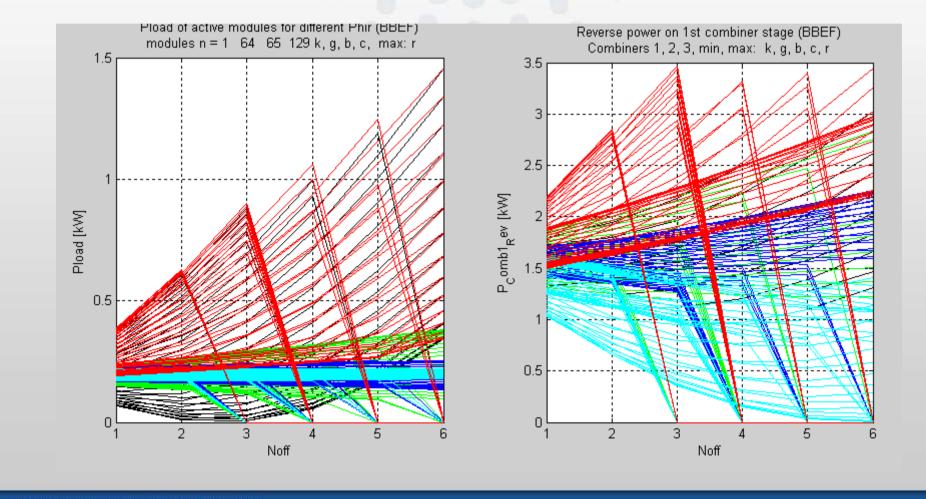


Idea from P. Marchand's team



Adjustment of phase between 1st and 2nd 8x-Combiner stages

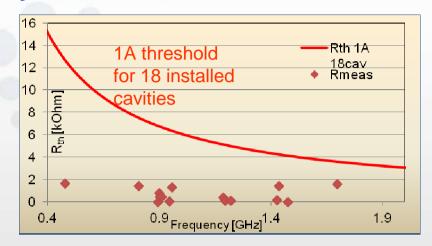
- 1 module OFF: depending on $\Delta \Phi_{I}$ the circulator load receives
 - $P_{rev}^{max} = 1400 \text{ W for worst } \Delta \Phi_L$
 - $P_{rev}^{max} = 1100 \text{ W for best } \Delta \Phi_{L}$
- Active modules receive the remaining power: maximum of 400 W for best $\Delta\Phi_{L}$



Adjustment of phase between 1st and 2nd 8x-Combiner stages

Interlock P_{reverse} < 3.5 kW

- Protection against short circuits of Combiners
- Partial protection against operation at high reflection with many modules OFF



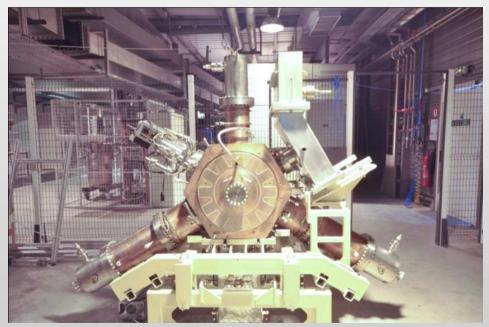
* This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.

1st HOM damped cavity delivered by RI – Research Instruments

- ✓ Excellent fundamental mode impedance:
 - $R_s = 4.9 M\Omega$,
 - $Q_0 = 33800$ (expected 30000 to 35000)
- HOM spectrum a factor two lower than design goal

October 2011: Installation on Storage Ring cell 25

- Passive operation with excellent vacuum behaviour at
 - ✓ 200 mA in mutlibunch fillings (a few hours after machine restart)
 - ✓ 95 mA in 16 bunch filling (most demanding for HOM dampers)
- Active operation beam acceleration very satisfactory
- \checkmark V_{acc} = 0.5 MV (conditioned to 0.6 MV)
- ✓ I_{beam} = 200 mA in uniform fill pattern during MDT, with almost 150 kW of incident power (100 kW transferred to the beam)
- ✓ I_{beam} = 4*10 mA during one week of USM without trip (however a few pressure bursts)
- ✓ I_{beam} = 85 mA in 16 bunch after a few hours of conditioning


* This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.

A light for Science

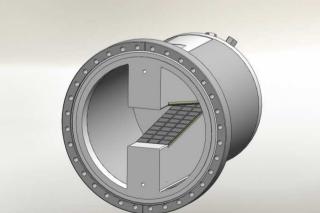
2nd cavity delivered by SDMS

May 2012: Installation on RF teststand

- ✓ V_{acc} = 0.5 MV after long (5 weeks) conditioning
- ✓ September: Straightforward conditioning from 0.5 to 0.75 MV
- ✓ 4 hours Run test at V_{acc} = 0.75 MV:
 - thermal degassing =f(power),
 4.10⁻⁸ mbar at 0.75 MV
 - over heating of Ti-coated field probe housing
 - Also over coupling of RF field probe
 - \Rightarrow field probe & housing will be "shortened" in the coming days
- Installation in cell 25 in coming winter shutdown

* This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.

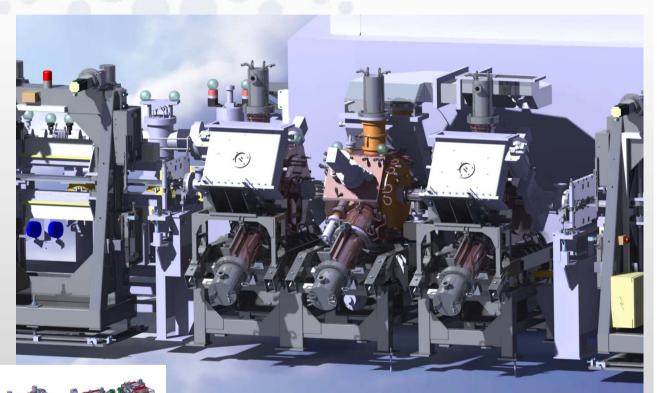
A light for Science


3rd cavity delivered by CINEL

Delivered in June 2012

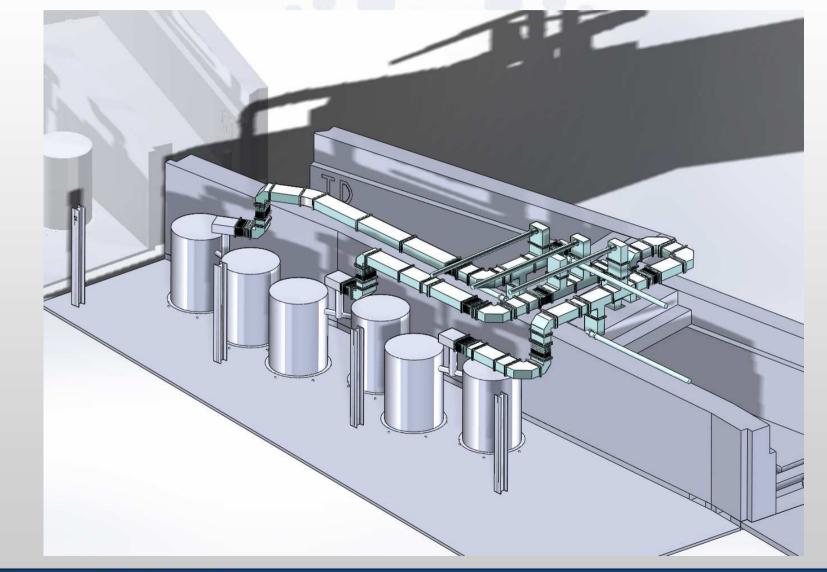
- ✓ Two HOM absorbers missing,
 - problem with brazing of Ferrite / Cu-W plate on stainless steel tapers
 - brazing should be re-done in the coming weeks and delivery expected mid November
- ✓ Vacuum test (SAT) OK for cavity, two intermediate sections & one HOM absorber
- ✓ Starting RF conditioning before the end of the year
- ✓ Test with beam directly on cell 23 (we skip cell 25 test)

Ferrite/Cu plate brazed on tapered stainless steel absorber

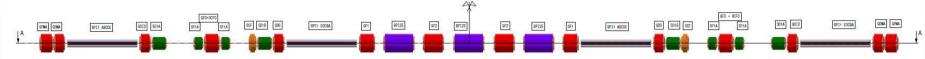


3 cavities in cell 23

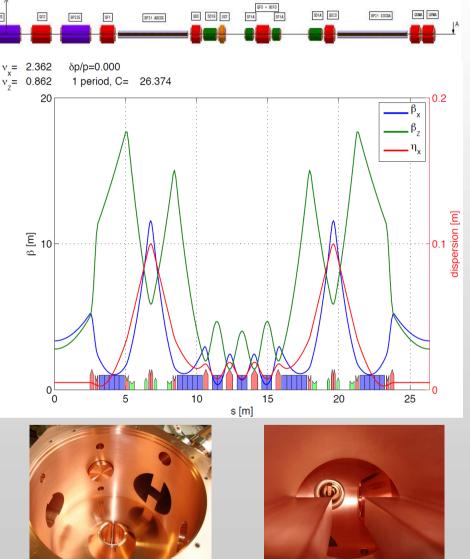
Summer 2013: Installation of all 3 cavities on cell 23 = first straight lengthened to 7 m


Preparation in progress:

- ✓ New magnets
- ✓ Dedicated PS's
- ✓New roof beams for RF waveguides in place
- ✓ Physical Extension to 7m in Dec. 2012
- ✓ Commissioning of new optics at Jan.' 2013 restart



3 SSAs of batch 2 feeding new cavities on cell 23



Outlook: new low emittance lattice for the ESRF

- Low horizontal emittance
 ε_x : today 4 nm → ≈ 150 pm
 - Keep Electron E = 6 GeV, nominal beam current I_{beam} = 200 mA
 - Project under study for phase 2 of ESRF upgrade (commissioning ≈ 2019)
 - > 7 bend achromate
 - Dipoles: 4 with longitudinal field gradients, 3 horizontally shifted quadrupoles, overall reduced field
 - > Keep existing SR tunnel and injector
 - Maintain existing 32 straight sections, as much as possible at same position
- Increased sensitivity to HOMs
 - ⇒ HOM damped cavities mandatory !

Preliminary RF parameters		Existing ESRF	New ESRF lattice	
Horiz. emittance	ε _x	4 nm	≈ 150 pm	
Energy loss (incl. 0.5 MeV for ID's)	U	5.41 MeV/turn	3.56 MeV/turn	
Longitudinal damping time	τ_{s}	3.4 ms	7.9 ms	
Momentum compaction factor	α	1.78 10-4	8.66 10 ⁻⁵	
Energy spread	$\sigma_{\rm E}/{\rm E}$	1.06 10 ⁻³	1.10 10 ⁻³	
Nominal RF voltage	V_{acc}	9 MV	6 MV	
\Rightarrow RF Energy acceptance	$\Delta E/E$	3.9 %	4.4 %	
LCBI threshold for given HOM impedance	ratio	2:1		
Number of mono cell HOM damped cavities	N _{cav}	18 / <mark>15</mark> *	12 / 10 *	
Cavity Coupling	β	3.5	3	
Copper loss per cavity	P_{copper}/N_{cav}	26 kW for 0.5 MV – 38 kW for 0.6 MV		
RF power per cavity at $I_{nom} = 200 \text{ mA}$	$P_{tot-200mA}/N_{cav}$	82 kW / 105 kW *	86 kW / 109 kW *	
RF power per cavity at 300 mA	$P_{tot-300mA}/N_{cav}$	109 / 138 kW *	119 kW / 147 kW *	

* degraded operation with reduced number of cavities

European Synchrotron Radiation Facility

16th ESLS RF, Barcelona, 9-10 October 2012

J. Jacob: Experience with SSAs & New Cavities...